Выбрать главу

Back at Vassar, Joe and I started scheming. Tadro1 didn’t have a biomimetic notochord yet, but Adam, Tadro1’s departing creator, helped Joe create Tadro2 by giving Tadro1 two important upgrades: (1) a computerized brain (replacing Tadro1’s analog circuitry) and (2) a genetic algorithm that coded for the size of a flapping tail made out of duct tape. Joined in the summer of 2004 by Nick Livingston, Joe quickly created a water world, programmed the digital brain, and set out to design a biomimetic notochord and vertebral column. For the electronics and the new Tadro body, he enlisted help from John Vanderlee and Carl Bertsche, Vassar’s electronics technician and machinist.

By the time our NSF funding started in January of 2005, Joe was already replacing Tadro2’s duct-tape tail with one that had a simple rod serving as a notochord. He used ten-centimeter-long cylindrical erasers as the notochord, plastic clamps as vertebrae, and then put a flared caudal fin on the end. Together we designed the genetic algorithm that would code for the evolvable traits: the length of the axial skeleton and the number of vertebrae. Nick made an important innovation: he wrote a program that allowed Tadro2 to make its tail adjustments for maneuvering using the same motor that flapped the tail. This architecture further reduced the complexity of Tadro2 and made it much more reliable. With our incoming students, whom we called “Fish Fellows,” we quickly realized that notochords made of erasers weren’t making sense because we couldn’t change the stiffness of the erasers’ material. The solution—building the notochord out of a biomaterial whose stiffness we could vary—would come from Tom Koob, as we’ll see on the next pages. With the change to the brain and the tail of Tadro2, we realized that we really had a new critter: Tadro3 (Figure 3.3).

We had three reasons for thinking that Tadro3 was the Evolvabot we were looking for: (1) the brain would make it autonomous, able to behave on its own without a human “in the loop,” without a remote operator acting as the eyes and brains of the operation; (2) the light-seeking behavior would emulate the phototaxis of the tunicate tadpole larva; and (3) the body would also emulate that of the tunicate larva, possessing a propulsive tail with a biomimetic notochord, a backbone whose properties we could vary by degrees, code with an artificial genome, and cause to evolve under the right ecological situation.

FIGURE 3.3. Tadro3, the Evolvabot designed to represent the tunicate tadpole larva. Tadro3 has a single eyespot (photoresistor), a flapping tail, and a microcontroller that converts the light intensity at the eyespot into a turning angle at the tail. This sensorimotor system produces autonomous phototactic navigation (see Figure 3.2). Tadro3 has a biomimetic gelatin hydrogel serving as a notochord. The notochord’s structural stiffness is determined by the material stiffness of the gelatin, which we control with chemical cross-linking, and the length of the tail. Both material stiffness and length of the tail were coded genetically as evolvable characters. Proportions are drawn to scale, and more information about the specifications of the design are available.[20]

To understand more about the backbone as a feature we targeted, we need to dig a bit deeper into some of the assumptions we’ve been making about the evolution of notochords and vertebral columns of chordates. As I said in Chapter 1, a species called Haikouichthys ercaicunensis, a small, sporty little fish that lived 530 million years ago (Figure 3.2), appears to have been conducting its own evolutionary experiment on turning a notochord into a vertebral column. Widely spaced bits of cartilage or bone can be seen along its notochord.[21] The proto-vertebrae, as some authors have dubbed them, are too far apart to resemble the tightly packed vertebrae that we see in most other fossils or living species that have vertebrae. However, for all of their differences, the proto-vertebrae of Haikouichthys allow us to infer three important things about the evolution of vertebrae:

* The earliest vertebrate fossils had a backbone that was primarily a notochord, supporting the contention that the notochord is the an cestral state of the vertebrate axial skeleton (no one is surprised by this, by the way, because evolutionary trees have long inferred this pattern, as we’ll see in a minute).

* Vertebrae, even though they appear early in vertebrate evolution, take millions of years to evolve into what we now recognize as a vertebral column. Philippe Janvier, a paleontologist specializing in the earliest fishes, estimates the origin of an internal skeleton of calcified cartilage or bone at about 443 million years ago, about 90 million years after Haikouichthys’ experiments.

* Because the backbone of Haikouichthys does not have the large vertebrae and thin intervertebral joints that we see in living fishes, but just the opposite, we need to be careful to recognize that the two states of the axial skeleton, notochords and vertebral columns, really demarcate the ends of a spectrum of possible axial skeletons. With that in mind, we’d expect to see throughout living and extinct vertebrates variations in the size, shape, and number of vertebrae and intervertebral joints.

Phylogenetic analysis gives us another clue about the polarity of the states, or spectrum of states, of the axial skeleton. The notochord, without any signs of vertebrae, is possessed by both tunicates and lancelets (see Figure 3.2). If, as Delsuc’s tree showed, tunicates are the sister group to vertebrates and lancelets are the sister group to tunicates + vertebrates, then the simplest, most parsimonious explanation is that notochords evolved in the common ancestor of all three groups, well before the vertebrates split off and began to evolve the vertebrae that we think we see in Haikouichthys.

Additional evidence for the notochord evolving first is that it also appears first in the development of living fish, prior to the formation of vertebrae; vertebrae are then built in and around the notochord.[22] Although being first in development isn’t, by itself, evidence for evolutionary polarity, the notochord is a central structure in early embryo development, one that is necessary for the formation of the nervous system and the growth of the embryo. Every vertebrate embryo grows a notochord first and then, if they grow one at all, a vertebral column. This invariant pattern of the notochord guiding the embryonic development of vertebrates and their vertebrae is consistent with the hypothesis that notochords evolved before vertebral columns.

In development and evolution the axial skeleton functions to stiffen the body. As we talked about in Chapter 1, stiffness is the mechanical property that dictates how much a structure changes shape—lengthens, shortens, twists, or bends—in response to having forces applied to it. Put a rubber band on your two index fingers and apply a tensile force to it by increasing the distance between your fingers. The rubber band, at least at first, lengthens easily. Now do the same thing with a shoelace, the ends of which you hold between index finger and thumb. The shoelace does not lengthen much, even if you apply as much force as you can. In engineering terms the shoelace is “stiffer in tension” than the rubber band.

вернуться

20

J. H. Long Jr., T. J. Koob, K. Irving, K. Combie, V. Engel, N. Livingston, A. Lammert, and J. Schumacher, “Biomimetic Evolutionary Analysis: Testing the Adaptive Value of Vertebrate Tail Stiffness in Autonomous Swimming Robots,” Journal of Experimental Biology 209, no. 23 (2006): 4732–4746.

вернуться

21

You can see the original pictures of the fossils in this paper: D.-G. Shu, S. Conway Morris, J. Han, Z.-F. Zhang, K. Yasui, P. Janvier, L. Chen, X.-L. Zhang, J.-N. Liu, Y. Li, and H.-Q. Lui, “Head and Backbone of the Early Cambrian Vertebrate Haikouichthys,” Nature 421, no. 6922 (January 2003): 526–529.

вернуться

22

Sindre Grotmol, Harald Hryvi, Roger Keynes, Christel Krossøy, Kari Nordvik, and Geir K. Totland, “Stepwise Enforcement of the Notochord and Its Intersection with the Myoseptum: An Evolutionary Path Leading to Development of the Vertebra?” Journal of Anatomy 209, no. 3 (2006): 339–357.