Выбрать главу

Теплообмен при фазовых превращениях влаги в атмосфере сам по себе не способен вызвать нагрева земной поверхности и даже стабилизировать его на одном уровне, ибо «теплая» в сравнении с космическим окружением Земля, получив меньше тепла от Солнца, казалось бы, обречена на постепенное остывание. Но вспомним, что стабилизация теплового состояния моря, покрытого многолетним льдом равновесной толщины, обеспечивается не просто льдом, а разной интенсивностью теплообмена через него: он отдает зимой тепло намного менее интенсивно, чем усваивает его летом. Но то же самое происходит и в атмосфере. Как бы не была плотной облачность, она не способна полностью исключить проникновения рассеянной радиации. Большая доля этого проникающего до поверхности океаносферы (или суши) излучения расходуется на парообразование. Высвобождается же оно в атмосфере намного позднее и медленнее, чем усваивается. Задерживается и остальная доля усвоенной земной поверхностью тепловой энергии.

Тепло, поступившее буквально со скоростью света, задерживается в атмосфере и на земной поверхности, видимо, не менее полусуток, становясь их достоянием. Поскольку это происходит каждый день, то такая задержка создает в атмосфере фон повышенной температуры, то есть тепловой барьер, приводящий к снижению отдачи тепла земной поверхностью. Здесь опять нам пригодится сравнение с ледяным покровом: он намерзает зимой так медленно, что не успевая достигнуть сколько-нибудь значительной толщины, снова начинает (и намного интенсивнее) таять летом, полностью локализуя намерзание, так и на земной поверхности при теплообмене через атмосферу. Ее остывание происходит медленнее, чем нагревание (точнее насыщение паром) и потому ещё не закончившись, снова сменяется нагреванием.

И там и тут такая неравнозначность в усвоении и потере тепла обусловливается различием интенсивностей разных форм теплообмена. На льду малоинтенсивной кондуктивной теплопроводности (при отводе тепла) противопоставляется намного более интенсивный конвективный теплообмен (при усвоении тепла). В атмосфере и на земной поверхности менее интенсивный конвективный теплообмен при отводе тепла через испарение – конденсацию постоянно сменяется самым интенсивным из возможных – лучистым теплообменом при поступлении тепла. Для пояснения сути возникающих таким путем процессов можно обратиться к примеру аналогичного накопления воды в резервуарах, за счет разности в интенсивности подачи и слива равных объёмов воды, то есть за счет разности расходов при его заполнении и сливе. Если скорость притока воды будет превышать скорость ее оттока, то вода будет накапливаться в резервуаре до тех пор, пока та и другая скорости не уровняются.

Подобный неравнозначный теплообмен через лёд на водоёмах чаще приводит к сохранению стабильного теплового уровня водной массы в окружении намного более холодной среды (реже к разогреву, как например на оз. Ванда в Антарктиде), а в атмосфере – определенно к разогреву поверхности планет. В последнем случае возникает, казалось бы, невозможный и все же очевидный термодинамический эффект – едва «теплое» тело Вселенной (Земля), находясь в окружении предельно «холодного» космоса, даже при уменьшении прихода тепла от согревающего его Солнца, оказывается способным к самостоятельному разогреву своих внешних сфер. То же, вероятно, происходит и на Венере, поскольку известно, что высокая температура её внешних сфер удерживается при меньшем, чем на Земле, прихода тепла от Солнца. Последнее обусловливается более значительным (по сравнению в Землей) альбедо венерианского облачного покрытия (около 0,6) существенно уменьшающим приход тепла, несмотря на то, что Венера находится к Солнцу ближе, чем Земля. Там теплота сдерживается фазовыми превращениями уже углекислого газа и ещё большей мощностью атмосферы. Наконец, мы уже знаем, что эти увеличения энтальпии внешних сфер Земли и Венеры в конечном счете обусловливаются работой внешних сил тяготения, реализуемой на конвективных движениях их атмосфер.