Ускорение вращения, то есть углового смещения внутренних слоев, происходит потому, что переданный им момент движения реализуется на вращение, но каждый раз по более короткому периметру окружности. Если мы теперь сопоставим скорость движения слоев вихря, то легко убедимся, что каждый слой, вращающийся по меньшему кругу, увеличивает не только угловую скорость вращения, но и линейную скорость движения относительно точек стенки стакана. Здесь создается тот же эффект изменения скоростей, который мы рассмотрели выше анализируя причины ускорения движения атмосферы при переходе воздушных масс в высокие широты Земли, получив новое объяснение причины возникновения струйных течений.
Рис. 18. Особенности развития вихря и спиралевидного движения посторонних масс в нём.
Согласно широко известной формуле длины окружности, где D – диаметр окружности, длина окружности уменьшается пропорционально уменьшению диаметра. Соответственно увеличивается и скорость вращения слоев жидкости с уменьшением диаметра окружности их вращения. Вместе с этим увеличивается и линейная скорость движения частиц вращающейся жидкости относительно стенок стакана. Если диаметр вращения уменьшается в 10 раз, то скорость движения частиц должна увеличиваться во столько же. На самом деле в вихре она увеличивается меньше из-за трения о стенки стакана.
И все же она действительно увеличивается, что наблюдается не только в стакане, но и в реальных вихревых движениях атмосферы в циклонах, смерчах, торнадо и тому подобных. И невозможно назвать иной причины ускорения ветра от обычной скорости 5… 10 км/ч до 300…400 км/ч, как порождением самой природы вихревого движения, тонкости которого еще нуждаются в специальном анализе.
Вернемся снова к стакану и рассмотрим поведение чаинок (рис. 18, б). Выше мы установили, что отвар чая после раскручивания не смещал своей массы к центру вихря, ограничиваясь лишь передачей момента (энергии) движения. По крайней мере поверхность водного отвара не обнаруживала такого смещения. Между тем чаинки быстро двигались к центру стакана. Существенно отличаясь рядом физических свойств, а главным образом, размером в сравнении с молекулами воды, они не могут на равных участвовать в движении ее однородной массы, но испытывают воздействие разных скоростей между соседними вращающимися ее слоями. И тут вступает в силу известное в гидродинамике уравнение, которое часто называют «законом Бернулли», согласно которому давление в движущейся жидкости или газе становится меньше там, где больше скорость движения жидкости, туда же устремляются и все частицы, принимающие пассивное участие в движении самой однородной жидкости или газа. Их движение, слагающееся из перемещения частиц из области с большим давлением к области с меньшим давлением и с движением по кругам вихря в конечном счете формирует в вихре наложенное движение частиц по спирали, вследствие чего чаинки собираются горкой в центре дна стакана. Вот таким я вижу решение задачи о чаинках. Теперь все это уже можно облечь в математизированную форму. Далее можно отойти от примеров со стаканом на малые природные вихри, на вращение всей атмосферы Земли и даже на изучение особенностей динамики межзвездного пространства и спиралевидных созвездий.
Здесь важно избрать верный изначальный путь исследования и не пренебрегать далее анализом каждый раз вновь возникающих обстоятельств и особенностей изучаемого явления. Сейчас причины почти всяких движений атмосферы чаще всего и в первую очередь объясняют возникновением различий атмосферных давлений. Например, установив, что в центре тропического циклона сильно понижается давление, мы легко соглашаемся с мнением, что и очень большая сила ветров в таких циклонах вызывается весьма значительным барическим градиентом. Но уже примитивный пример со стаканом чая наглядно показывает, что увеличение скорости движения вращающихся масс определяется самой природой вихря, в то время как образование барических контрастов при вихревом движении скорее всего является его следствием, но отнюдь не причиной его возникновения, И надо думать, что основные тайны грозных динамических явлений атмосферы и проблемы управления ими хотя бы качественного прогнозирования их развития найдут свое разрешение не ранее, чем будут хорошо изучены физические основы вихревых и спиралевидных движений. Тут есть еще над чем поработать пытливым исследователям.