Выбрать главу

На реке Лене, например, достаточно четко обнаруживается зависимость толщины льда от уклона, чем больше уклон, тем больше толщина, что в свою очередь, объясняется задержкой формирования ледостава на участках увеличенного уклона (рис. 14).

Рис. 14. Зависимость толщины льда от уклона русла на реке Лены:

1 – уклон; 2- толщина льда

Весьма мощным генератором дополнительных масс морского льда является известная заприпай-ная Сибирская полынья, достигающая площади сотен квадратных километров и существующая иногда большую часть зимы.

Вследствие термомеханических процессов средняя толщина льда по всей протяженности фарватера р. Лены бывает почти в 2 раза больше, чем на соседних спокойно замерзающих озерах. У Якутска толщина льда на р. Лене среди торосов в среднем составляет 200 см, а на соседних озерах – 100 см. Эти заключения сделаны нами по большому количеству собственных измерений толщины льда, но они с меньшей определенностью вытекают из стандартных наблюдений, поскольку на водопостах гидрометслужбы толщина льда измеряется преимущественно на ровном, всегда более тонком ледяном покрове.

На реках вне криолитозоны, например, европейской части СССР, в силу увеличенного грунтового питания чаще наблюдается обратная зависимость толщины льда от динамики потоков. Вероятно, это обстоятельство и обусловило тот факт, что о термомеханическом намерзании долгое время мало что знали. Часто считается, что отсутствие льда на водоёме зимой всегда приводит к резкому увеличению им потерь тепла и с учетом этого рассчитывают общие потери тепла водоёмом. Следует, однако, знать, что водоём может терять тепло только тогда, когда имеет его, то есть когда температура воды ещё не снизилась до температуры замерзания. Когда же это произошло, то все потери тепла могут выражаться только в намерзании льда, если даже он и не сплачивается в стабильный ледяной покров. Не учитывая этого обстоятельства, можно допустить ошибку в оценке зимних потоков тепла от воды, что, вероятно, и имеет место.

На быстрых сибирских реках замечено, что чем ниже температура воздуха, тем меньше собирается ледяного материала в зажоре. Вероятно, это обусловлено более ранним смерзанием ледяных образований при понижении температуры воздуха. Эта интересная особенность термомеханического утолщения льда, которую можно охарактеризовать афоризмом «чем больше мороз – тем меньше образуется льда» по свидетельству полярников наблюдается и в Арктическом бассейне и объясняется тем, что при сильном морозе бывает меньше причин для подвижек льда, приводящих к его торошению и образованию разводий.

Термомеханическое льдообразование имеет свое отражение в ходе теплообмена океана с атмосферой: торошение всегда заканчивается утолщением льда, ослаблением и временным прекращением этого теплообмена, а вскрытие разводий – увеличением его преимущественно за счет интенсификации льдообразования на открывшейся воде. Процессы термомеханического намерзания льда могут вносить существенные коррективы в привычное представление о якобы плотной связи интенсивности намерзания льда (изменений ледовитости) с температурой воздуха. Уже и потому термомеханические процессы заслуживают большего внимания, чем ему уделялось до сих пор. Поскольку основой термомеханического увеличения масс является смерзание, то изучение этих явлений правильнее будет начать с исследования теплофизических критериев процесса смерзания. Теоретические оценки и специально поставленные опыты показали, что различие коэффициентов теплопроводности и иных теплофизических характеристик воды и льда благоприятствуют тому, что охлажденные до небольшой отрицательной температуры льдины могут смерзаться не только в предельно охлажденной, но даже и в горячей воде (Бондарев, Файко, 1974). При контакте льдин в воде их смерзание может быть обеспечено настолько незначительным охлаждением, что измерять его зачастую оказывается невозможным. Смерзание льдин в реальных условиях водоёма может стимулироваться как охлаждением тех из них, которые контактируют с морозным воздухом, так и собственным «запасом холода» в льдинах, или хотя бы в одной из них. Поскольку удельная теплоёмкость льда на два порядка меньше удельной потери тепла, вызывающей кристаллизацию воды, то смерзание даже предельно прогретого льда до определенного, регламентируемого теплопроводностью периода, может происходить на два порядка интенсивнее, чем намерзание нового льда на воде. Оценка показывает, что готовый ледяной материал пресного водоёма под воздействием цикла зимнего охлаждения может смерзнуться на глубину до 15–20 м. Хорошо прогретый морской лёд в этих же условиях смерзнется на глубину 5…7 м.