Возможностью облучаемого тела усвоить, а становясь источником тепла, излучать то или иное количество энергии, определяется средняя температура его твердой сферы. Она не зависит от теплоемкости и теплопроводности материала твердой сферы, если нагрев и охлаждение происходит равновесно. В этом случае при большой теплоемкости масс увеличивается количество усваиваемого и высвобождаемого при охлаждении тепла, уменьшается амплитуда максимальных и минимальных значений температуры поверхности, но их средняя температура останется той же, какой она будет и у масс с меньшей теплоемкостью и теплопроводностью.
Уже поэтому можно заключить, что парникового эффекта атмосферы не должно быть, если бы его причина сводилась к различию форм лишь радиационного теплообмена, поскольку интенсивность излучения вовсе не зависит от его частоты. Изменить средний уровень температуры поверхности масс может лишь различие в интенсивностях усвоения и высвобождения тепловой энергии земной поверхностью, подобно тому, как это происходит при укрытии водоёма ледяным покровом, то есть неравновесный теплообмен.
Обратимся ещё раз к сравнению тепловых уровней поверхности Земли и ее спутника Луны, находящихся в среднем на одинаковом расстоянии от Солнца. Напомним, что на освещаемой стороне поверхность Луны нагревается до плюс 110 °C, а на теневой остывает до минус 120 °C. Это нагревание и охлаждение могло иметь большую амплитуду температур, если бы материал поверхности Луны обладал ещё меньшей теплоемкостью и молекулярной (кондуктивной) теплопроводностью. Но независимо от этого, при кондуктивном (в обе стороны) теплообмене ее поверхность все равно бы имела среднюю температуру минус 15 °C, какую она имеет сейчас и близкая той, которую, вероятно, сохраняет на некоторой глубине под её поверхностью.
Средний размах амплитуды наибольших и наименьших значений температуры на земной поверхности оказывается из-за увеличения тепловой инерции подвижных сфер намного меньшим. При этом средняя температура воздуха у земной поверхности составляет плюс 14 °C, а поверхность океаносферы плюс 17 °C, то есть на 29… 32 °C выше, чем на поверхности Луны. К тому же надо заметить, что из-за различий альбедо (0,07 у Луны и 0,33 у Земли) собственно земная поверхность получает от Солнца на единицу площади на 28 % тепла меньше, чем лунная. Чем же можно объяснить такое преимущественное тепловое состояние земной поверхности, по сравнению с лунной, если не различием интенсивностей усвоения и излучения тепла как главной причины гравитационного массо- и теплообмена, сопровождаемого фазовыми превращениями воды на океанах и в атмосфере. Рассматривая теплообмен водоёма, покрытого многолетним льдом, достигшим равновесной толщины, мы убедились, что в этих условиях сам водоём почти полностью прекращает обмен теплом с внешней сферой. Объясняется это тем, что практически весь теплообмен водоёма с термически воздействующей на него внешней средой замыкается на обмене теплотой фазовых превращений в ледяном покрове и в нем же полностью балансируется неравновесной разностью интенсивностей усвоения и потери тепла. Летом талая вода быстро стекает с поверхности одновременно всплывающего льда, который очередной зимой снова медленно намерзает на величину стаивания и так далее.
Нечто подобное, но как бы в вывернутом виде вероятно происходит и в насыщенной влагой атмосфере. При охлаждении (ночью или зимой) пар верхних слоев атмосферы конденсируется, высвобождая тепло, которое излучается в космическое пространство, одновременно блокируя излучение тепла от земной поверхности. При нагревании Солнцем сконденсировавшийся в облаках аэрозоль снова усваивает, уже в самой атмосфере, поступающую энергию на повторное испарение капелек аэрозоля, а определенная доля излучения достигает и земной поверхности. Увеличившееся количество пара никуда не денется, пока снова не сконденсируется, отдав усвоенное тепло и превратившись либо снова в облака, либо в осадки.
В таком обратимом через фазовые превращения в самой атмосфере теплообмене при современных земных условиях участвует примерно 2/3 объёма атмосферной влаги, что уже обусловливает нагревание земной поверхности по сравнению, например, с лунной. Как лёд не даёт при таком теплообмене глубоко промерзать водоему, так и испаряющаяся влага, и конденсирующийся пар в атмосфере не позволяют ей охлаждаться ниже определенного предела. Причем уровень нагревания атмосферы определяется именно количеством влаги и пара в ней. Таким образом, если оно увеличится еще на 1/3, что вполне возможно, то основной теплообмен Земли с Солнцем и космическим пространством почти замкнется на фазовых превращениях пара в атмосфере. На Земле не станет видно Солнца, но не будет ни зноя, ни стужи; средняя температура воздуха у земной поверхности поднимется еще на 10…15 °C, как это, вероятно, уже бывало, судя по остаткам древней флоры и фауны, и достигнет 24…29 °C. В данном случае повышение температуры мы приняли по уже определенному выше примерному «обогревающему» эффекту современного облачного покрова. Но верна ли такая оценка, если заведомо известно, что вместе с увеличением облачности до сплошной общее альбедо Земли увеличится ещё примерно на 25 % и радиации станет усваиваться на столько же меньше. В то же время возможность потребления тепла космическим пространством останется такой же неограниченной. Можно ли объяснить повышение температуры земной поверхности при накрытии её сплошной облачностью? Попробуем это сделать.