Выбрать главу

   Теперь материальные точки взятой нами области пространства входят одновременно в системные образования двух различных организационных уровней. Там, где материальные точки находятся в свободных от новообразованных сгустков областях пространства, они продолжают представлять первоначальный эфир. Там же, где формирование материальных точек в сгустки придало им новые качественные свойства, возникли области пространства, описываемые совсем иной функцией.

   После этого, если мы из части структурного пространства (фн. ячейки) изымем один из сгустков (фщ. единицу) и вместо него поместим равную ему по объему сумму материальных точек, организованных по системе эфира, то такая замена не будет равнозначной в силу различия функциональных свойств системных образований первого и второго уровней. По этой причине любая неравнозначная замена фщ. единиц всегда ведет к соответствующему изменению фн. фона данного образования. И наоборот, если мы вместо изъятого сгустка поместим в его фн. ячейку другой точно такой же сгусток материальных точек, то функциональные свойства данной части системы, как и ее фн. фон, не изменятся. Эти, а также другие закономерности системообразования лежат в основе построения всех окружающих нас материальных систем, представляющих собой энтелехические структуры фн. ячеек, каждая из которых объединяет строгий перечень определенных алгоритмов. Материальные образования, заполняя соответствующие фн. ячейки в качестве фщ. единиц, реализуют в процессе своего функционирования требуемые алгоритмы, обеспечивая тем самым существование всей данной целостной системы.

   Фн. ячейки на всех уровнях организации Материи не статичны, а возникают в силу балансированного изменения внутрисистемного потенциала то в одном, то в другом месте пространственно-временной протяженности.

   Фщ. единицы, постоянно притягиваясь ими, совершают соответствующие перемещения в пространстве-времени. Поэтому движение Материи в качестве-пространстве-времени следует рассматривать как постоянное движение всей совокупности фщ. единиц в пространственно-временное расположение соответствующих фн. ячеек, поскольку только там с их помощью может происходить реализация тех или иных фн. алгоритмов, актуально необходимая материальной субстанции для обеспечения своего существования, для осуществления того или иного этапа своего развития.

Принципы системного построения Материи

Принцип 1 Все движение Материи в качестве сводится к системной дифференциации функций ее образований, влекущей за собой их системно-структурную интеграцию.

Принцип 2 Каждое материальное образование имеет характерные только для него качественные свойства, описываемые строго определенной функцией, которые оно проявляет в процессе своего функционирования как часть некоторой системы организационного уровня n. Неизолированные материальные образования, имеющие фн. свойства одного системного уровня, вступают между собой во взаимосвязь, отражающую процесс системной интеграции Материи.

Принцип 3 Каждое материальное образование, представляющее совокупность взаимосвязанных дифференцированных элементов - фщ. единиц, структурно объединяет их в материальную систему организационного уровня n. Каждый элемент - фщ. единица уровня n - является микросистемным образованием совокупности дифференцированных элементов - фщ. единиц организационного уровня n-1 со специфическими для них фн. свойствами. Вместе с тем, устоявшаяся целостная система уровня n может представлять собой дифференцированный элемент - фщ. единицу структуры макросистемного образования более высокого организационного уровня n+1, способной реализовать соответствующие алгоритмы занимаемой ею фн. ячейки.

   Таким образом, вся системная организация материальной субстанции, разбитая на различные уровни, носит явно выраженный каскадный характер и каждый новый интеграционный этап дифференциации функций отражает очередную ступень каскадного Развития Материи.

Принцип 4 Каждая функциональная ячейка отличается от другой неоднородной ей фн. ячейки своим спектром алгоритмов функционирования, которые могут реализовываться только посредством заполняющих ячейки функционирующих единиц. Вот почему искомая фщ. единица должна обладать соответствующим перечнем функциональных возможностей, чтобы выполнять характерные для данной фн. ячейки алгоритмы.

Принцип 5 Изменение функциональных свойств (качества) любой системы уровня n является следствием изменения ее внутренней структуры, характеризуемой пространственно-временным расположением входящих в нее фн. ячеек и их алгоритмической взаимосвязью между собой. И наоборот, любое изменение внутренней структуры системы уровня n влечет за собой изменение ее функциональных свойств (качества).

Принцип 6 Каждое материальное образование, представляющее некую фщ. единицу "а", может проявлять свои фн. свойства только будучи помещенной в соответствующую ей фн. ячейку "А" пространственно-временной протяженности структуры системы уровня n. В то же время система уровня n может считаться целостной и нормально функционировать лишь при условии, что все фн. ячейки "А", "Б", "В" ... ее структуры будут заполнены соответствующими фщ. единицами "а", "б", "в" ... , через функционирование которых ячейки реализуют присущие им фн. алгоритмы.

Принцип 7 При замене в фн. ячейке "А" системы уровня n одной фщ. единицы "а" на другую равнозначную ей фщ. единицу "а" функциональные свойства всего системного образования не изменятся. Напротив, при замене в фн. ячейке системы фщ. единицы "а" на качественно отличную от нее фщ. единицу "б" того же организационного уровня n функциональные свойства всей данной системы, то есть ее фн. фон, соответственно изменятся.

   И действительно, если в молекуле воды H2O изъять входящий в ее состав атом кислорода из его фн. ячейки и вместо него поместить туда другой атом кислорода, функциональные свойства системного образования - молекулы воды - от этого не изменятся. Если же в освободившуюся фн. ячейку поместить атом серы, качественно отличающийся от атома кислорода, фн. свойства данной молекулы изменятся, поскольку после этого она будет обладать соответствующими свойствами сероводорода H2S, а не воды.

Принцип 8 Каждое материальное образование становится фщ. единицей в фн. ячейке структуры системы уровня n только в том случае, если оно имеет устоявшуюся системную законченность уровня n-1, выражающуюся в наличии определенного спектра фн. свойств, отражающих функциональную дифференциацию подсистем макросистемы. Обладание только частью системных фн. свойств вынуждает фщ. единицу занять любую соответствующую ей свободную фн. ячейку в структуре организационного уровня n+1, при этом автономное, внесистемное ее существование становится практически невозможным. Свои индивидуальные фн. свойства каждое организованное материальное образование уровня n может реализовать лишь в процессе фунционирования в качестве фщ. единицы в одной из соответствующих ей ячеек системы уровня n+1, однако внешне проявляться уже будут комплексные фн. свойства всего нового системного образования.

   Так, атомы кислорода, обладая определенным спектром фн. свойств, практически не могут существовать в свободном состоянии и вынуждены заполнять фн. ячейки молекулярных структур, например, кислорода O2 или озона O3 или какого-либо другого химического соединения, включающего атомы кислорода, после чего внешне проявляются уже фн. свойства молекул этих соединений. В силу этого, атом кислорода, заняв фн. ячейку в молекуле воды, реализует свои фн. свойства лишь как фщ. единица данного системного образования и его индивидуальные свойства становятся неразличимы от спектра фн. свойств вобравшей его системы. Вот почему на практике невозможно различить, например, в молекуле воды специфические качественные особенности атомов водорода и кислорода. Сделать это можно лишь изъяв указанные атомы из фн. ячеек молекулы, но тогда и атомы будут иметь уже другие, "внесистемные" признаки.

Принцип 9 Функциональные ячейки и соответствующие им функционирующие единицы всех организационных уровней имеют различный период времени существования в структуре данного системного образования. На этом принципе построены все функциональные изменения, а также временная продолжительность функционирования физических, химических, биологических и даже социальных систем.