Выбрать главу

ГИЛАС. Не является ли она, следовательно, видом энергии?

ФИЛОНУС. Нет. Ведь энергию, так же как и материю, нельзя – как я тебе уже сказал и как ты сам хорошо знаешь – аннигилировать, уничтожить. Энергия одного вида, например, световая, переходит в другую, например, тепловую, в то время как информацию можно уничтожить полностью.

ГИЛАС. И правда, весьма странно. Так что же это такое?

ФИЛОНУС. В том-то и состоит важное значение работ кибернетиков, что они нашли ответ на этот вопрос. Информация – это дитя термодинамики, образно говоря, поставленной, на голову, ибо она есть противоположность энтропии. Энтропия – физическая величина, мера дезорганизации, роста беспорядочности, увеличения хаотичности в материальных системах. Чтобы проанализировать это фундаментальное понятие без использования математики, нам придется – увы! – прибегнуть к разнообразным примерам и сравнениям.

Во всех без исключения процессах, происходящих в природе – как в звездах, так и в скоплениях атомов, – мы в основном наблюдаем увеличение беспорядочности, возрастающую дезорганизацию энергии. Летящему метеору присуща определенная внутренняя упорядоченность, которая выражается в том, что все его частицы движутся в одну сторону. Когда этот метеор упадет в ванну с водой, организованная энергия его направленного движения превратится в беспорядочное, хаотичное тепловое движение частиц, что проявится в закипании воды. О таком явлении мы говорим, что кинетическая энергия упорядоченного движения превратилась в энергию хаотического теплового движения. Так вот, в этом явлении чрезвычайно важна его необратимость. Невозможно, чтобы произошло нечто обратное, то есть чтобы вода, нагретая в ванне до температуры кипения, остыла, одновременно выбрасывая вверх метеор (или какое-то другое тело). Раз приведенные в состояние хаотического теплового движения частицы уже не способны преобразовать свою энергию в организованную энергию направленного движения метеоритной глыбы. Во всей природе мы наблюдаем постепенную дезорганизацию энергии, увеличение беспорядка, а мерой этого явления как раз и является энтропия. Стакан, брошенный на землю, разбивается: энергия упорядоченного движения переходит на низший уровень организации. Произошло нечто необратимое, ибо предоставленные сами себе осколки никогда не сложатся в целый стакан. Второй закон термодинамики обобщает это явление, глася, что энтропия замкнутой системы, предоставленной самой себе, может только возрастать, но не уменьшаться. Это означает, что наиболее естественным и привычным в природе является рост хаотичности, энергетическая дезорганизация, и именно поэтому спонтанно происходят лишь необратимые процессы. Газ, заполнивший под давлением сосуд, тут же расширится и рассеется, если этот сосуд открыть, – тем самым уменьшится энергетический порядок его частиц. Нагретые тела остывают, поскольку большее количество тепла характеризует большую энергетическую упорядоченность системы, а путь в природе ведет от порядка к хаосу, от организации к дезорганизации. Термодинамика отвечает на наш вопрос, какова вероятность появления некоего состояния, причем вероятен всегда и только рост хаотичности. Так вот, возвращаясь к кибернетике, – информация является противоположностью энтропии. В то время как энтропия есть мера беспорядка, информация – мера упорядоченности. Энтропия представляет наиболее вероятный ход явлений, информация же – мера процессов наименее вероятных, в том смысле, что информация, вложенная в определенную систему, самопроизвольно возрастать не может. Информацию, заключенную в замкнутой системе, можно уничтожить, но, раз уничтоженную, ее нельзя в этой системе воссоздать.

ГИЛАС. Как это – нельзя воссоздать информацию? Если еще раз собрать необходимые данные...

ФИЛОНУС. Я сказал: в замкнутой системе. Если эта система контактирует с окружением, дело обстоит иначе. Предоставленные сами себе, отрезанные от внешнего влияния, все системы, будь то планеты, горы или туманности, характеризуются с течением времени постоянным возрастанием дезорганизованности частиц, разложением структурного порядка, причем пределом этого процесса будет максимальный рост энтропии, которому соответствует полный беспорядок материи и энергии, иными словами – рой атомов, вообще не упорядоченных, перемешанных случайным образом. Противоположное явление, то есть самопроизвольный рост внутреннего порядка, будет в высшей степени невероятным. Разрушенные эрозией скалы не поднимутся сами из осыпей и не станут скалами, упавшие метеоры не взовьются обратно к звездам, разбитые кристаллы не восстановятся без притока внешней энергии (солнечной, например). И хотя явление роста энтропии подтверждается в туманностях и среди звезд, на небе и на Земле, однако существуют системы, которые создают видимость выпадения из этой общей закономерности.

ГИЛАС. Ты имеешь в виду наши тела?

ФИЛОНУС. Да. Ведь оплодотворенная яйцеклетка находится на более низком уровне, чем тот зрелый организм, который из нее развивается. Однако же организм возникает именно из частички белковых соединений, представляющей собой зиготу. Создается впечатление, что жизненные процессы идут «против течения» всех процессов природы в том смысле, что за пределами живых систем мы наблюдаем в природе одно лишь возрастание беспорядка, распад, уничтожение, упрощение структур, в то время как все протекание биологической эволюции представляет собой обратное явление: непрекращающееся уменьшение энтропии в пределах последующих организмов, которые более сложны, чем родительские формы.

ГИЛАС. Это явление вовсе не опровергает второго закона термодинамики, Филонус. Ведь известно, что живые организмы не являются изолированными системами, напротив, они живут именно благодаря окружению, поскольку их рост и развитие происходят за счет снижения уровня организации потребляемых ими продуктов. Звери питаются растениями, растения, в свою очередь, используют для синтеза собственных тканей энергию солнечных лучей, которая в результате подвергается дезорганизации, так что общий термодинамический баланс по-прежнему характеризуется возрастанием энтропии.

ФИЛОНУС. Ты прав, однако общий термодинамический баланс, подтверждающий правильность второго закона термодинамики, ни в малейшей степени не объясняет явления жизни. Подумай вот о чем: определенный механизм, определенная машина может воспроизвести только определенный механизм или же объект, структурно более простой, чем он сам. Попросту говоря, машина, производящая ботинок, более сложна, чем этот ботинок, машина для изготовления гвоздей более сложна, чем гвоздь, и так далее.

ГИЛАС. Всегда ли она должна быть более сложной? Мне кажется, сложность того, что производит, и того, что производится, может быть одинаковой. Возьми, к примеру, штамповочный механизм и отливку, им произведенную.

ФИЛОНУС. Всегда, всегда более, друг!

ГИЛАС. Но подожди-ка. Ведь на относительно простой машине, например токарном станке, можно изготовить очень сложный предмет.

ФИЛОНУС. Никогда. Более простая машина лишь тогда способна изготовить предмет более сложный, чем она сама, когда ее направляет человек, а в этом случае в расчет берется уже машина плюс человеческий мозг, то есть плюс вся его структурная сложность, равной которой в Космосе не существует.

ГИЛАС. Ну хорошо, а электронная счетная машина, которая выполняет невиданно сложное задание? Разве это задание не может быть структурно более сложным, запутанным, чем она сама? Правда, не представляю себе, как, собственно, измерить эту разницу в «запутанности»?

ФИЛОНУС. «Запутанность», или «усложненность структуры», в нашем понимании, – просто количество информации, мой Гилас. Счетный автомат может выполнить задание, которое структурно гораздо сложнее его, если мы поместим в него соответствующую инструкцию. Однако эта инструкция является определенной структурой, а говоря точнее – определенной информацией. Таким образом, окончательный баланс обнаружит перевес в сложности в пользу счетной машины, а не в пользу ее продукта – решенного задания. Рассмотрим для большей наглядности простой пример – твою формовочную машину. Штампует она, скажем, человеческие маски с формы. Таким образом форма в процессе штамповки передает глине определенный объем информации, при этом на практике некоторые незначительные детали формы утрачиваются в процессе штамповки, так что продукт (отливка) всегда чуточку менее сложный (обладающий меньшей информацией), чем сама отдельно взятая форма. Это проявление общего закона, по которому в процессе (при передаче) информация может уменьшиться, может подвергнуться упрощению, но сама собой она не увеличится. Это, как видишь, «обратная», кибернетическая, форма второго закона термодинамики, гласящего, что энтропия системы может спонтанно возрастать, но не может самопроизвольно уменьшаться. Однако идем дальше. Так вот, если бы мы процесс штамповки масок продолжили таким образом, что с каждой отливки изготавливали бы новую форму (негатив) и с нее отливали бы следующую маску, потом с этой следующей снова делали негатив (форму) и так далее, то после определенного количества таких повторений мы получили бы в конце концов маски, гораздо менее выразительные, чем исходная форма. Таким образом, мы смогли бы наблюдать постоянную дегенеративную тенденцию, проявляющуюся в том, что в процессе штамповки каждой последующей маски каждый раз утрачивались бы определенные детали рисунка. После многих тысяч операций мы получили бы в качестве отливки просто ком, лишь общим контуром приблизительно напоминающий исходный оригинал – и ни малейшей скульптурной изысканности. Так вот, следует отметить тот замечательный факт, что эта дегенеративная тенденция напрочь отсутствует в процессе, аналогичном рассмотренному, то есть при размножении живых организмов. Если бы подобная тенденция прослеживалась, дети всегда были бы несколько беднее (в смысле организации системы), чем родители, и через несколько поколений возникли бы системы, дезорганизованные настолько, что уже не были бы способны к жизни.