Представление математического знания в виде аксиом и правил вывода позволяет доказывать новые теоремы, используя которые можно доказывать ещё теоремы; и так до бесконечности, получая всё новые и новые математические истины. Здесь, как обычно, тоже есть место для споров. Одни говорят: раз все истины теории можно получить из аксиом с помощью правил вывода, стало быть, все теоремы теории уже содержатся в аксиомах и лишь извлекаются из них с помощью правил вывода. Другие же утверждают, что доказательством новых истин создается новая информация. Я держусь того мнения, что для Бога имеет место первая ситуация, а для человека – вторая. Что ты завис? Я непонятно объясняю? Хорошо, давай так.
Возьмём геометрию Евклида. Аксиомы и правила вывода позволяют получать теоремы, которые описывают свойства пространства. Мы можем взять любую истину евклидовой геометрии и опытным путём проверить те соотношения, которые она описывает. Говорят, что у этой теории есть модель, в данном случае – окружающее нас пространство. Когда есть модель, в которой выполняются аксиомы теории, в ней автоматически выполняются и все истины, известны они нам или нет. По существу, модель реализует теорию и все ее истины. Тот, кто сумел создать модель, сумел выполнить все истины теории и одноактно представить их. Ты знаешь, кто у нас ведущий специалист по моделям? Не будем всуе упоминать его имя. Если же модели нет, то наш удел - кропотливо, шаг за шагом доказывать всё новые и новые теоремы теории, расширяя свои познания.
Кэкэ наклонился, собрал несколько ягод брусники и закинул их себе в рот.
- Обожаю бруснику! Идеальная приправа к мясу, - удовлетворённо улыбнулся он, - О чём я там говорил? А-а-а! Понятное дело, аксиоматизация любой области знания позволяет представить её в необыкновенно компактном виде. Поэтому элегантность, завершённость и практичность этого подхода сделали его эталоном научной строгости. По этой же причине аксиоматизация различных знаний о нашем мире стала важнейшей задачей науки. Когда я говорю об аксиоматизации некоторых знаний о мире, я смотрю на эту часть мира как на модель некоторой математической теории и пытаюсь сформулировать аксиомы этой теории. Понятно?
- Подожди, Кэкэ, - прервал его Дорожная Пыль. - А с чего это ты вообще решил, что в основе мира должны лежать аксиомы?
- Ну, маги это видят непосредственно. Но можно дать и логическое объяснение.
Скажем, математическая физика - хороший пример попытки аксиоматизации знаний о мире. Или вот ещё, - с этими словами Кэкэ встал, несколько раз присел и снова уселся на ствол поваленной сосны, - вот ещё так можно смотреть. Берём известные нам законы, составляющие нашу модель мира, добавляем к ним аксиомы математики, с помощью которых выражаются эти законы, и получаем промежуточную на данный момент аксиоматику мира. Конечно, хреновую: место истинных аксиом занимают познанные нами следствия; но уж какая-никакая. Мы можем только двигаться к истинной аксиоматике мира, уточняя известные законы и переходя к более общим. Разумеется, если бы мы знали истинные аксиомы мира и имели инструмент, который по ним мог создавать модели, то мы могли б создавать миры, подобно Самому…, - и Кэкэ закатил глаза вверх, показывая туда же большим пальцем. - Но вот теперь пришло время задать себе такой вопрос: насколько произвольно можно выбирать аксиомы из уже, допустим, известного списка, чтобы при наличии необходимого аппарата получать реальные модели мира? Здесь есть несколько важных моментов.
Во-первых, желательно, чтобы аксиомы были независимы. Другими словами, ни одна из выбранных аксиом не должна быть лишней, без которой можно обойтись: этим минимизируется их необходимое число. Хотя, когда они зависимы, ничего страшного тоже не произойдёт.
Во-вторых, аксиомы должны быть непротиворечивы. Это значит, что из выбранных аксиом нельзя вывести некоторую истину и одновременно её отрицание. Понятно, что у противоречивой системы аксиом модели быть не может, так как реальная модель не может быть такой и не такой одновременно. Известно, например, что математическая логика имеет непротиворечивый набор аксиом.
Наконец, необходимо знать, полна или не полна система аксиом. В полной системе аксиом для любого правильно построенного утверждения можно получить доказательство либо его истинности, либо его ложности. То есть, в отношении любого факта теории можно установить, истинен ли он. Например, математическая логика имеет полную систему аксиом. В неполной системе существуют такие факты теории, в отношении которых нельзя установить их истинность или ложность. Это означает, что к исходным аксиомам можно добавить такое недоказуемое утверждение или его отрицание и получить две разные теории: у одной присутствует указанное утверждение, а у другой – его отрицание. Если теперь перейти к модели теории с неполной системой аксиом, то при наличии такого недоказуемого утверждения уже приходится иметь две модели, соответствующие двум новым теориям. Вот и получается, что неполные теории как бы расщепляются на множество теорий и соответственно требуют множество моделей. Ну, что я тебя ещё не утомил? - поинтересовался Кэкэ. - Эти начальные вещи ты должен хорошо понять, чтобы не мучить меня потом лишними вопросами.
Он встал, постоял в задумчивости, потом снова сел, и снова встал. Было видно, что он хочет что-то сказать, но не знает как. Наконец, он сел, подышал на стёкла очков и протёр их вынутым из кармана платком.
- Тут такое дело... Не знаю, стоит ли тебе сейчас говорить об этом...
- Говори, конечно. Я же ради этого и пришёл к тебе.
Кэкэ внимательно посмотрел на Дорожную Пыль, как бы оценивая на глазок его возможности.
- Как бы тебе сказать... Я, видишь ли, по молодости не очень доверял тому, что скажу тебе сейчас. Во-первых, хочу сказать о непротиворечивости. Курт Гёдель показал, что непротиворечивость арифметики нельзя доказать средствами самой арифметики. Но арифметика реализуется в окружающем нас мире и не только в нашем. Значит, она непротиворечива. Это понимают все, хотя доказательства мы пока не знаем. Итак, получается, что оно обязательно есть, хотя и неизвестно нам.
- Так здорово же! В чём проблема?
- Ты наверное плохо понял меня. Давай ещё раз. Арифметика непротиворечива. Так? Это доказательство не может быть получено средствами самой арифметики, но оно как бы есть. Значит, важнейшая информация об арифметике, в данном случае о её непротиворечивости, находится как бы вне арифметики. Но тогда и информация о теории, представляющей мир, зачастую находится вне этой теории. Ты понимаешь, что это такое? Важнейшая информация о мире, который является воплощением некоторой теории, не может быть получена только исследованием этого мира. Для ее получения мы должны обращаться к чему-то более высокому, не от мира сего.
- Ты про Бога, что ли?... Слушай! Может быть это и есть то самое доказательство непротиворечивости арифметики?
- Не понял. Ты о чём? - удивился Кэкэ.
- Ну, как же? Арифметика реализуется в нашем мире? Да! Наш мир существует? Да! Противоречивый мир мог бы существовать? Нет! Значит, арифметика непротиворечива! И все эти рассуждения, как ты видишь, находятся вне арифметики. Ну, как тебе такая мысль?