Выбрать главу

Но, можно возразить, такая же сила, вероятно, действует и на головную массу, тормозя систему? Нет! Для головной массы действует эффект в точности противоположный. Гравитационный потенциал ведомой массы отстаёт от ведущей, поэтому ведущая масса оказывается под воздействием уменьшенной силы от притяжения ведомой. Поэтому она так же не будет уравновешена силой сжатия стержня, и стержень будет толкать эту массу вперёд.

Рис.4. Массы на концах движущегося стрежня испытывают неуравновешенную силу, превышающую силу их гравитационного притяжения в состоянии покоя.

Выходит, что стержень под воздействием этих неожиданных сил начнёт ускоряться. Причём, из состояния покоя стержень сам в движение не придёт, ему необходимо дать некоторую начальную скорость вдоль его оси.

Конечно, можно возразить: дополнительная сила притяжения просто сожмёт стержень, и он станет короче. Но этого не может произойти. Деформация отстающего конца стержня постепенно (не быстрее скорости света) передастся на его передний край, конец стержня будет стремиться переместиться вперёд. Этому будет препятствовать ведущая масса. За счёт чего? Сила притяжения этой массы от отстающего тела всегда меньше той, что соответствует исходной, «несжатой» длине стержня, поскольку для ведущей массы расстояние до ведомой «кажется» более длинным. Поэтому в ведущей, передней по движению массы не появится дополнительной силы, чтобы компенсировать возросшую силу давления от связующего стержня.

Давайте оценим величину этих сил и возникшего от их действия ускорения. В состоянии покоя массы притягиваются с силой согласно закону Ньютона:

где

F       – сила притяжения точечных масс;

m       – массы на концах стержня;

r       – длина стержня;

G      – гравитационная постоянная.

Путь стержень движется со скоростью v вдоль своей оси. За некоторый момент времени ведущая масса переместится из точки a в точку a', а ведомая – из точки b в точку b'. Из точки a' гравитационный потенциал ведущей массы начал создавать обновленные значения поля в направлении ведомой массы со скоростью света – с. До того момента, когда фронт прибудет в точку b', там «действует» прежнее, большее значение потенциала.

Рис.5. Масса в конце движущегося стрежня испытывают силу, как если бы длина стержня была меньше исходной

Ведомая масса движется навстречу этому фронту со скоростью v, находясь в поле с последним значением потенциала. Поскольку на начало движения расстояние между массами было равно r, фронт от ведущей массы встретится с ведомой массой в точке, отмеченной красной чертой, через время t = r / (c + v). За это время ведомая масса приблизится к точке, из которой началось движение фронта нового значения потенциала, на расстояние b – b' = r1 = vt = rv / (c + v). Следовательно, ведомая масса окажется в точке с потенциалом, соответствующим этому изменённому расстоянию

В дальнейших расчетах будем скорость движения стержня измерять в долях от скорости света v = kc, назвав для наглядности эту безразмерную величину k той же буквой v, что и размерную скорость стержня:

Итак, мы видим, что при движении стержня массы m на его концах притягиваются с силой, которая соответствует уменьшенной длине стержня. Эта сила притяжения равна:

Дополнительная сила, не уравновешенная сжатым связующим стержнем, таким образом, равна:

Сила эта, следовательно, приводит к ускоренному движению ведомой массы с ускорением:

Казалось бы, нам при вычислении ускорения следовало взять удвоенную массу, поскольку это и есть масса всего стержня. Но очевидно, что точно такая же сила действует и на ведущую массу, приводя её в точно такое же ускоренное движение, что, в конечном итоге, приведёт к полученному выражению.