Выбрать главу

Каково же внутреннее сопротивление вашего лимона? Извлеките медный и цинковый электроды и вставьте измерительные щупы с никелевым покрытием в сок. При измерении сопротивления я получал результат порядка 30 кОм, когда оба щупа находились в тех же местах в лимоне, что и вынутые электроды.

Если же измерительные щупы были вставлены в другие места (на большее расстояние друг от друга), то сопротивление было 40 кОм или даже больше. Меньше ли будет сопротивление, если вы будете проверять сопротивление жидкости в чашке?

Здесь осталось еще два вопроса, которые вы можете исследовать. Насколько долго ваша лимонная батарейка будет в состоянии генерировать электричество? И как вы думаете, почему покрытые цинком электроды становятся бесцветными после некоторого времени их использования?

Электричество генерируется батареей за счет обмена ионами или свободными электронами между металлами. Если же вы хотите узнать больше об этом, то обратитесь к разд. «Теория — Природа электричества».

Внимание!

При измерении тока никогда не подключайте ваш мультиметр между выводами настоящей батареи. Ток будет настолько большим, что вы в лучшем случае можете сжечь предохранитель мультиметра.

Природа электричества

Чтобы понять природу электричества, вы должны начать с таких основ, как изучение строения атомов. Каждый атом состоит из ядра, в центре которого содержатся протоны, имеющие положительный заряд. Каждое ядро окружено электронами, которые имеют отрицательный заряд.

Деление ядра атома требует использования большого количества энергии, но при этом может высвободиться большое количество энергии — как это случается при атомном взрыве. Но для того, чтобы заставить пару электронов покинуть атом (или присоединиться к другому атому), требуется сравнительно небольшое количество энергии. Например, когда цинк вступает в химическую реакцию с кислотой, он освобождает электроны.

Это то, что случается с цинковым электродом в химической батарейке при выполнении эксперимента 5.

Реакция вскоре останавливается, поскольку электроны накапливаются на цинковом электроде. Они отталкивают друг друга, если им некуда двигаться. Вы можете представить их в виде толпы враждебных друг к другу людей, каждый из которых хочет выкинуть другого и отказывается допустить еще кого-нибудь присоединиться к ним, как это показано на рис. 1.63.

Рис. 1.63. Электроны, расположенные на электроде, плохо относятся друг к другу, что заставляет их отталкивать друг друга

Теперь рассмотрим, что происходит, когда провод соединяет цинковый электрод, на котором находится избыток электронов с другим электродом, изготовленным из другого материала, в котором, наоборот, ощущается недостаток электронов. Электроны могут проходить по проводу очень легко, переходя от одного атома к другому, поэтому они покидают цинковый электрод и перемещаются по проводу, движимые сильнейшим желанием оторваться друг от друга (рис. 1.64). Эта совместная движущая сила и создает то, что называется электрическим током.

Рис. 1.64. Как только мы открываем для переполненного электронами цинкового электрода путь к медному электроду, который содержит «дырки» для электронов, совместное отталкивание электронов заставляет их пытаться отделиться друг от друга и добраться до своего нового «дома» как можно быстрее

Теперь популяция электронов на цинковом электроде уменьшается, но реакция цинка с кислотой может продолжаться, заменяя ушедшие электроны новыми, которые мгновенно начинают повторять поведение своих предшественников, отталкивая друг друга при перемещении по проводу. Процесс продолжается до тех пор, пока реакция цинка с кислотой не прекратится. Обычно это происходит из-за того, что создается слой некоторого соединения, как правило это оксид цинка, который не реагирует с кислотой и предотвращает реакцию с цинком, находящимся внутри электрода (Именно поэтому цинковый электрод при извлечении из кислотного электролита выглядит так, как будто он покрыт сажей.)