Выбрать главу

ЭВАРИСТ ГАЛУА

(1811-1832)

Он прожил двадцать лет, всего пять лет из них занимался математикой. Математические работы, обессмертившие его имя, занимают чуть более 60 страниц.

В 15 лет Галуа открыл для себя математику и с тех пор, по словам одного из преподавателей, «был одержим демоном математики». Юноша отличался страстностью, неукротимым темпераментом, что постоянно приводило его к конфликтам с окружающими, да и с самим собой.

Галуа не задержался на элементарной математике и мгновенно оказался на уровне современной науки. Ему было 17 лет, когда его учитель Ришар констатировал: «Галуа работает только в высших областях математики». Ему было неполных 18 лет, когда была опубликована его первая работа. И в те же годы Галуа два раза подряд не удается сдать экзамены в Политехническую школу, самое престижное учебное заведение того времени. В 1830 г. он был принят в привилегированную Высшую нормальную школу, готовившую преподавателей. За год учебы в этой школе Галуа написал несколько работ; одна из них, посвященная теории чисел, представляла исключительный интерес.

Бурные июльские дни 1830 г. застали Галуа в стенах Нормальной школы. Его все более захватывает новая страсть – политика. Галуа присоединяется к набиравшей силы республиканской партии - Обществу друзей народа, - недовольной политикой Луи-Филиппа. Возникает конфликт с директором школы, всеми силами противодействовавшим росту политических интересов у учащихся, и в январе 1831 г. Галуа исключают из школы. В январе 1831 г. Галуа передал в Парижскую академию наук рукопись своего исследования о решении уравнений в радикалах. Однако академия отвергла работу Галуа – слишком новы были изложенные там идеи. В это время Галуа находился в тюрьме. После освобождения уже в июле он вновь оказывается в тюрьме Сент-Пелажи после попытки организовать манифестацию 14 июля (в годовщину взятия Бастилии), на сей раз Галуа приговорен к 9 месяцам тюрьмы. За месяц до окончания срока заключения заболевшего Галуа переводят в больницу. В тюрьме он встретил свое двадцатилетие.

29 апреля он выходит на свободу, но ему было суждено прожить еще лишь только один месяц. 30 мая он был тяжело ранен на дуэли. На следующий день он умер. В день перед дуэлью Галуа написал своему другу Огюсту Шевалье письмо: «Публично обратись к Якоби или Гауссу с просьбой дать мнение не об истинности, а о значении тех теорем, развернутого доказательства которых я не даю, и тогда, надеюсь, кто-нибудь сочтет полезным разобраться во всей этой путанице». Работы Галуа содержали окончательное решение проблемы о разрешимости алгебраических уравнений в радикалах, то, что сегодня называется теорией Галуа и составляет одну из самых глубоких глав алгебры. Другое направление в его исследованиях связано с так называемыми абелевыми интегралами и сыграло важную роль в математическом анализе XIX в. Работы Галуа были опубликованы лишь в 1846 г. Ж. Лиувиллем, а признание к ним пришло еще позже, когда с 70-х гг. понятие группы постепенно становится одним из основных математических объектов.

------------------------------------------

Некоторые геометрические задачи: удвоение куба, трисекция угла (см. Классические задачи древности), построение правильного семиугольника – приводят к решению кубических уравнений. По ходу решения требовалось отыскать точки пересечения конических сечений (эллипсов, парабол и гипербол). Пользуясь геометрическими методами, математики средневекового Востока исследовали решения кубических уравнений. Однако им не удалось вывести формулу для их решения. Первым крупным открытием западноевропейской математики была полученная в XVI в. формула для решения кубического уравнения. Поскольку в то время отрицательные числа еще не получили распространения, пришлось отдельно разбирать такие типы уравнений, как x3 + px = q, x3 + q = px и т. д. Итальянский математик С. дель-Ферро (1465-1526) решил уравнение x3 + px = q и сообщил решение своему зятю и ученику А.-М. Фиоре, который вызвал на математический турнир замечательного математика-самоучку Н. Тарталью (1499- 1557). За несколько дней до турнира Тарталья нашел общий метод решения кубических уравнений и победил, быстро решив все предложенные ему 30 задач. Однако найденная Тартальей формула для решения уравнения x3 + px + q = 0

была опубликована не им, а итальянским же ученым Дж. Кардано (1501-1576), который узнал ее от Тартальи. В это же время Л. Феррари (1522-1565), ученик Кардано, нашел решение уравнения 4-й степени.

Создание алгебраической символики и обобщение понятия числа вплоть до комплексных чисел позволили в XVII-XVIII вв. исследовать общие свойства алгебраических уравнений высших степеней, а также общие свойства многочленов от одного и нескольких переменных.

Одной из самых важных задач теории алгебраических уравнений в XVII-XVIII вв. было отыскание формулы для решения уравнения 5-й степени. После бесплодных поисков многих поколений алгебраистов усилиями французского ученого XVIII в. Ж. Лагранжа (1736-1813), итальянского ученого П. Руффини (1765-1822) и норвежского математика Н. Абеля в конце XVIII – начале XIX в. было доказано, что не существует формулы, с помощью которой можно выразить корни любого уравнения 5-й степени через коэффициенты уравнения, используя лишь арифметические операции и извлечение корней. Эти исследования были завершены работами Э. Галуа, теория которого позволяет для любого уравнения определить, выражаются ли его корни в радикалах. Еще до этого К.Ф. Гаусс решил проблему выражения в квадратных радикалах корней уравнения xn - 1 = 0, к которому сводится задача о построении с помощью циркуля и линейки правильного n-угольника. В частности, невозможно с помощью этих инструментов построить правильный семиугольник, девятиугольник и т.д. – такое построение возможно лишь в случае, когда n - простое число вида  или произведение различных простых чисел такого вида.

Наряду с поисками формул для решения конкретных уравнений был исследован вопрос о существовании корней у любого алгебраического уравнения. В XVIII в. французский философ и математик Ж. Д'Аламбер доказал, что любое алгебраическое уравнение ненулевой степени с комплексными коэффициентами имеет хотя бы один комплексный корень. В доказательстве Д'Аламбера были пропуски, восполненные потом Гауссом. Из этой теоремы следовало, что любой многочлен n-й степени от x разлагается в произведение n линейных множителей.

В настоящее время теория систем алгебраических уравнений превратилась в самостоятельную область математики, называемую алгебраической геометрией. В ней изучаются линии, поверхности и многообразия высших размерностей, задаваемые системами таких уравнений.

АЛГОРИТМ

Алгоритм - точное предписание, определяющее процесс перехода от исходных данных к искомому результату.

Предписание считается алгоритмом, если оно обладает тремя следующими свойствами:

определенностью, т.е. общепонятностью и точностью, не оставляющими место произволу;

массовостью, т.е. возможностью исходить из меняющихся в известных пределах значений исходных данных;