Некоторые исследователи проводят клинические испытания, одновременно применяя САГК и 5-азацитидин, и пытаются вмешаться в этот цикл, разрушая механизмы эпигенетического подавления ДНК и гистонов. Пока неясно, окажутся ли их усилия успешными. В случае неблагоприятного исхода можно будет предположить, что в восстановлении метилирования ДНК низкие уровни гистонового ацетилирования играют далеко не главную роль. Возможно, для этого более важны некие особые гистоновые модификации, подобные тем, которые мы только что описали. Но мы пока не имеем лекарственных средств для подавления каких-либо других эпигенетических ферментов, так что на настоящий момент мы зашли в тупик, где мы просто лишены возможности выбора.
В будущем, возможно, нам вовсе не придется пользоваться ингибиторами ДНМТ. Связь между метилированием ДНК и гистоновыми модификациями при раке не абсолютна. Если островок CpG метилирован, то расположенный под ним ген подавлен. Но существуют и гены-супрессоры новообразований, которые располагаются под неметилированными островками CpG, как и такие, которые вообще не имеют островков CpG. Эти гены также могут быть подавлены, но исключительно благодаря гистоновым модификациям[198]. Это продемонстрировал Жан-Пьер Исса из Андерсоновского Ракового центра Хьюстона, сделавший огромный вклад в клиническое применение методик эпигенетической терапии. В таких случаях, если нам удастся обнаружить подходящие эпигенетические ферменты, на которые следует направить ингибиторы, у нас, возможно, получится возобновить экспрессию супрессоров новообразований, и тогда нас уже перестанет волновать вопрос метилирования ДНК.
Есть ли что-то особенное в генах-супрессорах новообразований, которые подавляются эпигенетическими модификациями? На этот счет существуют две взаимоисключающие теории. Согласно первой из них, эти гены не представляют собой ничего из ряда вон выходящего, и этот процесс абсолютно случаен. По этой теории, время от времени те или иные супрессоры новообразований случайно подвергаются эпигенетическим модификациям. Если в результате этого происходит изменение экспрессии гена, то это может означать, что клетки с такой эпигенетической модификацией начинают расти чуть быстрее и чуть лучше, чем их соседи. Это дает клеткам преимущество в росте, и они перерастают окружающие их клетки, постепенно аккумулируя все больше эпигенетических и генетических изменений, в результате чего они трансформируются в раковые.
Другая точка зрения заключается в том, что супрессоры новообразований, подавляемые эпигенетически, являются каким-то образом выбранными для этого процесса мишенями. Это не просто случайное стечение неблагоприятных обстоятельств, так как на самом деле риск именно этих генов подвергнуться эпигенетической репрессии превышает среднестатистические показатели.
В последние годы — когда в нашем распоряжении появились технологии для составления все более точных профилей эпигенетических модификаций в самых разнообразных типах клеток — мы начинаем склоняться в сторону второй позиции. Существует целый ряд генов, которые, как представляется, более других уязвимы для репрессии эпигенетическими механизмами.
На первый взгляд это может показаться полностью противоречащим здравому смыслу. Как, ради всего святого, могло случиться, что в результате миллиардов лет эволюции мы оказались обладателями клеточного механизма, делающего нас уязвимыми перед канцерогенными изменениями? Однако это следует рассматривать в контексте. Большинство эволюционных процессов неразрывно связаны со стремлением индивидуума оставить после себя как можно более многочисленное потомство. Для человека, достигающего репродуктивного возраста, крайне важно, чтобы его раннее развитие протекало максимально продуктивно. В конце концов, о каком воспроизводстве можно говорить, не пройдя благополучно эмбриональную стадию развития? Но как только мы достигаем репродуктивного возраста и получаем возможность продолжить род, то, с эволюционной точки зрения, нам совсем необязательно продолжать жить после этого еще несколько десятилетий.