Хотя и млекопитающие, и цветковые растения осуществляют импринтинг, они, как представляется, пользуются для этого несколько различными механизмами. Млекопитающие подавляют соответствующую копию импринтингового гена с помощью метилирования ДНК. Растения получают только ту копию отцовского гена, которая несет на себе метилирование ДНК. Однако репрессируется далеко не всегда именно эта метилированная копия гена[287]. При импринтинге растений, таким образом, метилирование ДНК сообщает клетке, каким образом ген был унаследован, а не как этот ген должен экспрессироваться.
Существуют некоторые фундаментальные аспекты метилирования ДНК, которые довольно схожи у растений и животных. Геномы растений кодируют активные ферменты метилтрансферазы ДНК, а также белки, которые могут «прочитывать» метилированную ДНК. Подобно первичным половым клеткам млекопитающих, определенные клетки растений способны активно удалять метилирование с ДНК. Нам даже известно, какие именно ферменты отвечают у растений за эту реакцию[288]. Один из них называется DEMETER (Деметра) в честь матери Персефоны из древнегреческих мифов. Деметра была покровительницей урожая, и именно благодаря сделке, заключенной ею с Гадесом, повелителем Подземного мира, человечество получило смену времен года.
Но метилирование ДНК является также и аспектом эпигенетики, и здесь очевидны явные различия в том, как растения и высшие животные пользуются одной и той же базовой системой. Одним из наиболее выраженных различий в этом процесс является то, что растения метилируют не только мотивы CpG (когда за цитозином следует гуанин). Хотя эти мотивы и являются наиболее распространенной последовательностью, на которую нацелены их метилтрансферазы ДНК, растения также метилируют цитозин, за которым следует практически любое другое основание[289].
Метилирование ДНК у растений, как и у млекопитающих, часто сосредоточено вокруг неэкспрессируемых повторяющихся элементов. Но разница станет более чем очевидной, если мы исследуем схему метилирования ДНК на экспрессируемых генах. У почти 5 процентов экспрессируемых генов растений метилирование ДНК на промоторах детектируется, но свыше 30 процентов ДНК метилировано в областях, кодирующих аминокислоты, в так называемом теле генов. Гены с метилированием участков тела имеют тенденцию экспрессироваться в самых разнообразных тканях и экспрессируются в этих тканях от умеренного до высокого уровня.[290]
Высокие уровни метилирования ДНК на повторяющихся элементах у растений очень подобны схеме повторяющихся элементов в хроматине высших животных, таких как млекопитающие. И напротив, метилирование тел активно экспрессируемых генов в значительно большей степени похоже на то, что наблюдается у медоносных пчел (которые не метилируют повторяющиеся элементы). Это не означает, что растения являют собой некий причудливый эпигенетический гибрид насекомых и млекопитающих. Это только лишь заставляет предположить, что эволюция располагает ограниченным набором сырья и высокой избирательностью того, как им пользоваться.
Глава 16. Прогнозы на будущее
Трудно что-либо предвидеть, а уж особенно будущее.
Одна из наиболее примечательных особенностей эпигенетики заключена в том факте, что эта отрасль науки в некотором роде вполне доступна и неспециалистам. Конечно, не у всех из нас есть доступ к самому современному экспериментальному оборудованию, и потому не каждый сумеет с точностью определить, какие изменения хроматина лежат в основе тех или иных эпигенетических явлений. Но любой из нас в состоянии наблюдать окружающий мир и делать прогнозы на основании собственных наблюдений. Все, что нам для этого требуется, это оглядеться вокруг и определить, отвечает ли какой-либо феномен двум важнейшим критериям эпигенетики. Благодаря этому мы получим возможность увидеть весь мир, включая и человека, в совершенно новом свете. Эти два критерия — те самые, к которым мы то и дело возвращались на протяжении всей нашей книги. Любое явление испытывает на себе влияние эпигенетических изменений в ДНК и соответствующих белках в том случае, если удовлетворяются одно или оба из следующих условий.