Выбрать главу

Все это, конечно, не так просто. Еще предстоит преодолеть целый сонм технологических барьеров, не говоря уже о том, что один из четырех факторов Яманаки, с-Мус, провоцирует развитие рака. Но за несколько лет, прошедших после той знаменитой публикации в журнале Cell, ученым удалось достичь заметного прогресса в совершенствовании технологий, благодаря чему мы теперь находимся едва ли не на самом пороге клинических испытаний. Мы научились создавать человеческие iPS клетки так же легко и уверенно, как мышиные, причем для этого теперь далеко не всегда используется с-Мус[13]. Разработаны новые способы создания клеток, устраняющие и некоторые другие тревожившие нас раньше проблемы безопасности. Например, при ранних методиках создания iPS клеток на стадии клеточной культуры использовались животные продукты. Это было небезопасно, поскольку всегда имел место риск заражения человека специфическими болезнями животных. Однако теперь исследователи обнаружили синтетические заменители этих животных продуктов[14]. Весь процесс воспроизводства iPS клеток постоянно и неуклонно совершенствуется. Но финишную черту мы пока не пересекли.

Одна из проблем, связанных с воспроизводством iPS клеток в промышленных масштабах, состоит в том, что мы пока не знаем, каковы будет требования регулирующих органов к вопросам безопасности, прежде чем они разрешат использовать iPS клетки для лечения людей. В настоящее время предоставление прав на терапевтическое использование iPS клеток регламентируется двумя совершенно разными инструкциями. Происходит это по той причине, что мы будем вводить пациенту клетки (клеточная терапия), которые были предварительно генетически модифицированы (генная терапия). Регламентирующие органы чрезвычайно осторожны по той причине, что очень многие испытания в области генной терапии, с завидным энтузиазмом проводившиеся в 1980-х и 1990-х годах, в лучшем случае не приносили больным никакой практической пользы, а иногда приводили к непредвиденным и ужасающим последствиям, в том числе к развитию смертельных форм рака[15]. Количество потенциальных регулятивных барьеров, которые предстоит преодолеть iPS клеткам, прежде чем они получат право применяться в терапевтических целях, поистине неисчислимо. Можно было бы подумать, что ни один инвестор не станет вкладывать собственные деньги в такие рискованные проекты. Однако вкладывают, и делают они это по той причине, что если исследователи смогут разработать непогрешимую технологию, то рентабельность инвестиций будет колоссальной.

Вот всего лишь один расчет. По самым скромным оценкам, на обеспечение инсулином и оборудованием для измерения уровня сахара в крови каждого диабетика в Соединенных Штатах затрачивается ежемесячно около 500 долларов. За год эта цифра вырастает до 6000 долларов, следовательно, если человек болеет диабетом в течение сорока лет, то на него будет израсходовано 240 тысяч долларов. Прибавим сюда затраты на все виды лечения, которые потребуется пройти даже тем диабетикам, которые скрупулезно следят за своим здоровьем, поскольку никто из них не застрахован от осложнений, провоцируемых их болезнью. Нетрудно будет подсчитать, что затраты на поддержание здоровья каждого человека, болеющего диабетом, в течение его жизни составят не менее миллиона долларов. А только в Соединенных Штатах насчитывается как минимум миллион человек, страдающих диабетом 1 типа. Это означает, что в самом лучшем случае экономика США расходует свыше миллиарда долларов каждые четыре года только на борьбу с диабетом 1 типа. Так что, какой бы затратной ни оказалась дорога iPS клеток в клиники, они потенциально способны принести инвесторам громадные прибыли, если использование их окажется дешевле, чем расходы на нынешнее лечение диабетиков на протяжении всей их жизни.

И это мы коснулись только диабета. А сколько еще, кроме него, болезней, панацеей от которых могли бы стать iPS клетки! В первую очередь, они смогли бы помочь больным, страдающим нарушениями свертываемости крови, такими как гемофилия, болезнью Паркинсона, остеоартритом и слепотой, вызванной дегенерацией желтого пятна. По мере того как ученые будут разрабатывать все новые технологии производства искусственных структур, которые могут быть имплантированы в наши организмы, мы научимся использовать iPS клетки для замены поврежденных кровеносных сосудов при заболеваниях сердца, для регенерации тканей, пораженных раком, и его лечения.

вернуться

13

Nakagawa et al. (2008), Nat Biotechnol. 26: 101–6.

вернуться

14

See, for example, Baharvand et al. (2010) Methods Mol Biol. 584: 425–43.

вернуться

15

Gaspar and Thrasher (2005), Expert Opin Biol Ther. 5: 1175–82.