Выбрать главу

Примеры в предложенной аналогии придуманы нами, но мы можем рассматривать их как реально существующие. Одним из ключевых белков на самых ранних стадиях эмбрионального развития является Oct4. Белок Oct4 присоединяется к определенным ключевым генам и одновременно притягивает конкретный эпигенетический фермент. Этот фермент модифицирует хроматин и меняет регуляцию гена. И Oct4, и эпигенетический фермент, с которым тот взаимодействует, жизненно важны для эмбриона на ранних стадиях его развития. Если один из них отсутствует, зигота не сможет развиться даже до того, чтобы сформировать ВКМ.

Схемы экспрессии генов на ранних этапах развития эмбриона, в конечном счете, регулируются автоматически. Когда экспрессируются определенные белки, они могут связаться с промотором Oct4 и подавить экспрессию этого гена. В обычных условиях соматические клетки не экспрессируют Oct4. Это было бы для них слишком опасно, поскольку Oct4 мог бы нарушить нормальную схему экспрессии генов в дифференцированных клетках и превратить их в некое подобие стволовых клеток.

Именно это и проделал Шинья Яманака, когда использовал Oct4 в качестве перепрограммирующего фактора. Искусственно создав очень высокие уровни содержания Oct4 в дифференцированных клетках, он сумел «обмануть» клетки и вынудить их вести себя так, как будто они находились на ранних стадиях развития. Даже эпигенетические модификации были аннулированы — вот насколько велика сила этого гена.

Нормальное развитие предоставляет нам важные доказательства необходимости эпигенетических модификаций для контроля участи клетки. Не менее наглядно демонстрируют нам значение эпигенетики и те случаи, когда развитие идет по неверному пути.

Так, в одной из публикаций журнала Nature Genetics в 2010 году были приведены примеры мутации, вызывающей редкое заболевание, которое называется синдромом Кабуки. Синдром Кабуки представляет собой комплексное нарушение развития, характеризуемое целым рядом симптомов, в том числе, таких как врожденное слабоумие, низкий рост, патологии лица и расщелина неба. В статье отмечалось, что синдром Кабуки провоцируется мутациями в гене под названием MLL2[29]. Белок MML2 является эпигенетическим шифровальщиком, добавляющим метиловые группы к определенной лизиновой аминокислоте в позиции 4 на гистоне H3. Белки с такой мутацией не способны прочесть эпигенетический код правильно, вследствие чего и возникают такие симптомы.

Заболевания людей также могут быть вызваны мутациями ферментов, удаляющих эпигенетические модификации, то есть «ластиков» эпигенетического кода. Мутации в гене под названием PHF8, который удаляет метиловые группы из лизина в позиции 20 на гистоне H3, вызывают синдром врожденного слабоумия и расщелины неба[30]. В этих случаях клетки больных приобретают эпигенетические модификации без проблем, но не могут правильным образом удалить их.

Интересно отметить, что хотя белки MML2 и PHF8 играют разные роли, но клинические симптомы, вызываемые мутациями в этих генах, проявляют себя в одинаковой степени. И в первом, и во втором случае они приводят в расщелине неба и врожденном слабоумии. Оба эти симптома принято считать признаком нарушения хода развития. Эпигенетические пути важны на протяжении всей жизни человека, но, как оказывается, особенное значение они приобретают в период развития.

Кроме этих гистоновых шифровальщиков и ластиков, существует свыше 100 белков, которые выступают в роли «дешифровщиков» этого гистонового кода, связываясь с эпигенетическими метками. Эти дешифровщики притягивают другие белки и выстраивают комплексы, активирующие или репрессирующие экспрессию генов. Происходит это подобно тому, как МеСР2 помогает подавить экспрессию генов при метилировании ДНК.

Гистоновые модификации принципиально отличаются от метилирования ДНК. Метилирование ДНК представляет собой очень стабильное эпигенетическое изменение. Если какой-либо участок ДНК стал метилированным, то он и останется метилированным в подавляющем большинстве случаев. Вот почему эта эпигенетическая модификация настолько важна для того, чтобы нейроны всегда оставались нейронами, и именно по этой причине зубы не вырастают у нас на глазных яблоках. Хотя метилирование ДНК и может быть удалено из клетки, это явление весьма маловероятно и возможно лишь в крайне чрезвычайных обстоятельствах.

вернуться

29

Ng et al. (2010), Nat Genet. 42: 790–3.

вернуться

30

Laumonnier et al. (2005), J Med Genet. 42: 780–6.