Хотя плацента и является великолепно организованной структурой, позволяющей питаться плоду, эта система порождает и ряд «спорных вопросов». Говоря языком бизнеса или политики, возникает конфликт интересов, поскольку, в эволюционном смысле, наши организмы сталкиваются с дилеммой.
Вот как звучит эволюционный императив млекопитающего самца, если преобразовать его в человеческие термины:
Эта беременная самка несет мои гены в виде плода. Возможно, мне никогда больше не доведется спариться с ней. Я хочу, чтобы мой плод стал как можно больше, потому что тогда у него будет максимум шансов передать мои гены дальше.
У самки млекопитающего эволюционный императив совершенно иной:
Я хочу, чтобы этот плод выжил и передал мои гены дальше. Но я не хочу, чтобы для этого он истощил меня до такой степени, что я стану неспособна к воспроизводству. Я хочу иметь не только этот единственный шанс передать дальше свои гены.
Эта война полов у млекопитающих зашла в эволюционный тупик. Целый ряд контролирующих факторов гарантирует, что верх в этом сражении не возьмет ни материнский, ни отцовский геном. Мы сможем лучше понять, как это работает, если снова обратимся к экспериментам Азима Сурани, Давора Собела и Брюса Каттанача.
Это те ученые, которые создавали мышиные зиготы, имевшие только отцовскую или материнскую ДНК.
Искусственно получив в пробирках такие зиготы, исследователи имплантировали их в матку мышей. Ни в одной лаборатории из этих зигот никогда не рождались живые мыши. Однако зиготы некоторое время развивались в матке, но с заметными аномалиями. Причем аномалии эти были довольно разными, в зависимости oi того, от матери или от отца были получены все хромосомы.
В обоих случаях немногие эмбрионы, которым все же удалось сформироваться, были маленькими и отстающими в своем развитии. Когда все хромосомы являлись материнскими, плацентарные ткани оказывались сильно недоразвитыми[62]. Если все хромосомы были получены от отца, то эмбрион еще более отставал в росте, ко плацентарные ткани у него формировались лучше[63]. Ученые создали эмбрионы из смеси этих клеток — клеток, имевших унаследованные только у отца или у матери хромосомы, но и эти эмбрионы не смогли развиться в полноценный, готовый к рождению плод. При их исследовании ученые обнаружили, что все ткани таких эмбрионов состояли только из материнских клеток, в то время как клетки тканей плаценты оказались исключительно отцовскими[64].
Эти данные дают возможность предположить, в мужских хромосомах существует определенный фактор, инициирующий программу развития плаценты, а полученный от матери геном по большей мере на сориентирован эмбрион, а не на плаценту. Как это согласуется с конфликтом или эволюционным императивом, изложенным в начале этой главы? Плацента является своего рода порталом, через которые питательные вещества, циркулирующие в материнском организме, поступают в плод. Полученные от отца хромосомы запускают развитие плаценты и тем самым создают механизмы «переадресации» как можно больших количеств питательных веществ из материнской кровеносной системы в организм плода. Материнские хромосомы действуют в противоположном направлении, и в условиях нормальной беременности создается четко уравновешенная патовая ситуация.
Сам собой напрашивается вопрос — все ли хромосомы важны для получения такого результата? Для поисков ответа на него Брюс Каттанач проводил сложные генетические эксперименты на мышах. Его подопытные мыши имели хромосомы, порядок которых был изменен. Проще говоря, у каждой мыши было требуемое число хромосом, но между собой они были «склеены» иначе, чем это бывает в природе. Ему удалось создать мышей, абсолютно точно передававших по наследству аномалии своих хромосом. Например, он смог вывести мышей, унаследовавших обе копии определенной хромосомы только от одного родителя.
В первых экспериментах, ставших достоянием гласности, он работал с мышиной хромосомой 11. Из всех остальных пар хромосом мыши наследовали по одной материнской и одной отцовской хромосоме в каждой паре. Но исключением стала хромосома 11, поскольку Брюс Каттенач вывел мышей, которые наследовали две копии материнской хромосомы 11 и ни одной копии отцовской, или же наоборот. Полученные им результаты представлены на рисунке 8.1[65].
Рис. 8.1. Брюс Каттенач создал генетически модифицированных мышей, у которых он мог контролировать наследование определенного участка хромосомы 11. Изображенная в середине мышь унаследовала по одной копии у каждого родителя. Мышь, унаследовавшая обе копии у матери, оказалась мельче нормальной мыши. Напротив, мышь, унаследовавшая обе копии у отца, была крупнее нормальных размеров