Этот процесс ломки старого и возведения нового Кун назвал сменой парадигмы, введя термин, ставший речевым штампом для пишущих на темы науки журналистов. Смена парадигмы не основывается исключительно на рационализме. Она невозможна без эмоциональных и социологических изменений в умах приверженцев доминирующей теории. За много лет до появления книги Томаса Куна великий немецкий ученый Макс Планк, обладатель Нобелевской премии по физике за 1918 год, высказался на эту тему более категорично, когда заявил, что «научные теории не меняются вследствие того, что старые ученые меняют свои убеждения; они меняются, так как старые ученые умирают[122]».
Сейчас мы находимся как раз в середине такой смены парадигмы в биологии.
В 1965 году Нобелевская премия в области физиологии и медицины была присуждена Франсуа Жакобу, Андре Львову и Жаку Моно «за открытия, касающиеся генетического контроля синтеза ферментов и вирусов». Эта формулировка включала в себя и открытие матричной РНК (мРНК), с которой мы уже познакомились в Главе 3. мРНК является относительно недолговечной молекулой, которая переносит информацию с нашей хромосомной ДНК и действует как промежуточная матрица для продукции белков.
Уже многие годы известно, что в наших клетках присутствуют и другие разновидности РНК, специфические молекулы, которые называются транспортными РНК (тРНК) и рибосомными РНК (рРНК). тРНК представляют собой маленькие молекулы РНК, способные удерживать на одном своем конце определенную аминокислоту. Когда молекула мРНК «прочитывается» для продукции белка, тРНК доставляет свою аминокислоту в нужное место на растущей белковой цепочке. Все это происходит в крупных структурах клеточной цитоплазмы, которые называются рибосомами. Рибосомная РНК является главным компонентов рибосом, где она играет роль огромных строительных лесов, удерживающих на своих местах различные другие молекулы РНК и белков. Мир РНК, таким образом, представляется вполне простым и понятным. В нем есть структурные РНК (тРНК и рРНК) и есть матричная РНК.
На протяжении десятилетий главными звездами подиума молекулярной биологии были ДНК (основной код) и белки (функциональные и трудолюбивые молекулы клетки). РНК отводилась второстепенная роль относительно безынтересной молекулы-посредника, курьера, доставляющего информацию от конструкторов и инженеров в рабочие цеха.
Все, кто сколько-нибудь серьезно занимается молекулярной биологией, признают, что белки чрезвычайно важны. Они осуществляют огромный объем функций, благодаря которым становится возможной сама жизнь. Следовательно, гены, кодирующие белки, также невероятно важны. Даже самые незначительные изменения в этих кодирующих белки генах могут привести к катастрофическим последствиям, таким как мутации, вызывающие гемофилию или муковисцидоз.
Но эта общепринятая точка зрения делает видение ситуации научным сообществом несколько ограниченным. Тот факт, что белки и, как следствие, кодирующие белки гены жизненно важны, не подразумевает, что все остальное в геноме не имеет никакого значения. Тем не менее, именно такая теоретическая концепция главенствует вот уже в течение десятилетий. И это весьма странно, учитывая, что уже многие годы мы располагаем данными, подтверждающими, что одними только белками дело далеко не ограничивается.
Пару десятилетий тому назад ученые установили, что программа развития «редактируются» клетками перед тем, как она будет передана «исполнителям». Происходит это благодаря интронам, с которыми мы познакомились в Главе 3. Они представляют собой последовательности, копирующиеся из ДНК в мРНК, а затем сплайсирующиеся, прежде чем матрица будет переведена в последовательность белка рибосомами. Интроны были обнаружены в 1975 году[123], и Нобелевская премия за их открытие была присуждена в 1993 году Ричарду Робертсу и Филлипу Шарпу.
Еще в далеких 1970-х ученые пытались сравнивать простые одноклеточные организмы и такие сложные творения как человек. Количество ДНК в их клетках оказалось, как это ни удивительно, сопоставимым, особенно если учесть их несхожесть. Это подразумевало, что некоторые геномы должны содержать множество незадействованных ДНК, что, в свою очередь, позволило сформировать идею «бесполезной ДНК»[124] — последовательностей хромосом, не выполняющих никаких значимых функций, поскольку они не кодируют белки. Приблизительно в то же время в нескольких лабораториях были получены доказательства того, что многие геномы млекопитающих содержат в себе последовательности ДНК, которые повторяются снова и снова и не кодируют белки (повторяющаяся ДНК). Поскольку эти ДНК не кодируют белки, был сделан вывод, что никакой роли они в клетках и не играют. Выглядело это так, как будто они существуют сами по себе[125][126]. Френсис Крик и группа исследователей для описания этих областей придумали неологизм «эгоистичная ДНК». Эти две структуры, «бесполезная ДНК» и «эгоистичная ДНК», недавно с легкой иронией были охарактеризованы, как «неожиданное подтверждение того, что геном является структурой, сильно перенасыщенной всевозможным генетическим хламом и эволюционным мусором»[127].