Выбрать главу

Рис. 10.3. Схематическое изображение того, как экспрессия микроРНК на определенных стадиях развития можетрадикально изменить экспрессию гена-мишени

Важность этой работы заключается в том, что она заложила фундамент для совершенно новой модели регуляции экспрессии генов. Короткие нкРНК, как нам теперь известно, являются механизмом, которым пользуются организмы всего растительного и животного мира для контроля экспрессии генов. Существуют разнообразные виды коротких нкРНК, но мы уделим внимание в основном микроРНК (миРНК).

В клетках млекопитающих идентифицировано, по меньшей мере, 1 000 различных миРНК. В длину миРНК насчитывают около 21 нуклеотида (основания), иногда они могут быть чуть длиннее или короче, и большинство из них выступают, как представляется, в роли посттранскрипционных регуляторов экспрессии генов. Они не останавливают продукцию мРНК — вместо этого они регулируют ее «поведение». Обычно для этого они связываются с нетранслируемой областью 3’ (3’ НТР) молекулы мРНК. Эта область показана на рисунке 10.3. Она присутствует в зрелой мРНК, но не кодирует никакие аминокислоты.

Когда геномная ДНК копируется для продукции мРНК, оригинальный транскрипт обычно бывает очень длинным, поскольку он содержит в себе и экзоны (которые кодируют аминокислоты), и интроны (которые аминокислоты не кодируют). Как мы узнали из главы 3, интроны удаляются во время сплайсинга для продукции мРНК, кодирующей белок, но при описании этого процесса в главе 3 мы кое-что опустили. На РНК есть такие участки — в ее начале (называемый 5’ НТР) и в конце (3’ НТР), — которые не кодируют аминокислоты, но также и не сплайсируются, подобно интронам. Напротив, эти некодирующие области сохраняются на зрелой мРНК и действуют как регуляторные последовательности. Одна из функций 3’ НТР, в частности, состоит в том, чтобы связывать регуляторные молекулы, включая миРНК.

Как миРНК связывается с мРНК, и что происходит после этого? миРНК и 3’ НТР мРНК взаимодействуют только в том случае, если узнают друг друга. Для этого они пользуются спариванием оснований, довольно подобным тому, что мы встречали на двойных цепочках ДНК. Г может связаться с Ц, А может связаться с У (место Т в РНК занимает У). Хотя длина миРНК обычно составляет 21 основание, совсем не обязательно весь ее набор из 21 нуклеотида должен соответствовать мРНК. Ключевая область на миРНК занимает положение от 2 до 8.

Иногда соответствие на позициях от 2 до 8 оказывается не идеальным, но достаточно близким для того, чтобы две молекулы образовали пару. В таких случаях связывание миРНК препятствует трансляции мРНК в белок (именно это и произошло в ситуации, показанной на рис. 10.3). Если же соответствие полное, связывание миРНК с мРНК инициирует разрушение мРНК ферментами, прикрепленными к миРНК[140]. Пока нам еще не ясно, влияют ли позиции с 9 по 21 на миРНК менее непосредственным образом на то, как эти маленькие молекулы определяют свои мишени и к чему оно приводит. Однако мы знаем совершенно точно, что единственная миРНК может регулировать более чем одну молекулу мРНК. Из Главы 3 мы узнали, что один ген способен кодировать множество различных молекул белка, меняя способы сплайсирования матричной РНК. Единственная миРНК может одновременно оказывать влияние на многие из этих по-разному сплайсированных версий. Кроме того, единственная миРНК способна влиять и на совершенно неродственные белки, закодированные разными генами, но имеющие похожие последовательности 3’ НТР.

Все это существенно усложняет точное определение истинной роли миРНК в клетке, так как результаты ее деятельности варьируются в широких пределах в зависимости от типа клетки и других генов (кодирующих и не кодирующих белок), которые экспрессирует клетка в каждый момент времени. Проникновение в эти тайны имеет не только огромное экспериментальное значение, но и важные последствия для понимания природы самых разных заболеваний. Например, в ситуациях, присутствует аномальное число хромосом, меняется не только количество кодирующих белок генов. Здесь наблюдается и аномальная продукция нкРНК (длинных и коротких). Так как миРНК, в частности, способна регулировать множество других генов, то последствия нарушений в количестве копий миРНК могут быть очень разнообразными.

Пространство для маневра
вернуться

140

For a good review, see Bartel (2009), Cell 136: 215–233.