Предложите сыграть в эту игру своим друзьям. Лишь очень немногие из них смогут расставить все семь монет, даже если вы один раз быстро продемонстрируете им, как следует играть.
Невиданный меч
Присмотритесь повнимательнее к этой картинке. Что художник нарисовал неправильно?
Взгляните на меч в руке рыцаря: его невозможно вложить в ножны.
Эти два меча (если только они не имеют утолщений) можно вложить в ножны соответствующей формы. Можете ли вы придумать еще какую-нибудь форму для меча и парных ему ножен?
Вам пришла в голову мысль перейти от плоских кривых к пространственным? Оказывается, помимо двух традиционных форм мечей, вкладывающихся в ножны, тем же свойством обладают только мечи, выкованные в форме винтовой линии.
Винтовая линия играет важную роль в современной науке, — особенно в биологии и физике элементарных частиц. Молекулы ДНК имеют форму винтовой линии. В отличие от своих одно- и двумерных двоюродных сестер — прямых и окружностей — винтовая линия обладает «закрученностью», то есть может быть правой и левой. Прямая и окружность неотличимы от своих зеркальных отражений, но отличить винтовую линию от ее зеркального отражения не составляет ни малейшего труда. В зеркале винтовая линия, по выражению Алисы из Зазеркалья (Льюис Кэрролл), «идет наоборот».
Существует множество примеров винтовых линий в природе и в повседневной жизни. Винтовая линия по традиции считается правой, если она закручивается по часовой стрелке по мере удаления от вас. Винты, болты и гайки, как правило, имеют правую нарезку. Винтовые лестницы, стебли сахарного тростника, пружины, волокна в канатах и кабелях и стружки могут закручиваться как вправо, так и влево.
К числу примеров встречающихся в природе винтовых линий относятся рога многих животных, раковины морских моллюсков, гигантский зуб нарвала, ушная раковина человека, пуповина. В мире растений винтовая линия встречается в строении стеблей, побегов, усиков, семян, цветов, шишек, листьев и т. д. Взбираясь на вершину дерева или спускаясь с нее, белка описывает винтовую линию. Вылетая из пещеры, летучие мыши также движутся по винтовым линиям. Винтовые линии, навитые на конус, можно без труда обнаружить в таких атмосферных явлениях, как вихри или смерчи. Вода, стекая в раковине, также закручивается в воронку, сотканную из винтовых линий. Много других примеров винтовых линий вы найдете в книге М. Гарднера «Этот правый, левый мир»[3].
Правильная винтовая линия — это кривая, навитая на круговой цилиндр под постоянным углом к образующим (напомним, что образующими называются прямые на поверхности цилиндра, параллельные его оси). Пусть ϑ — угол, под которым винтовая линия пересекает образующие цилиндра. При ϑ = 0° винтовая линия, как нетрудно видеть, вырождается в прямую, а при ϑ = 90° — в окружность.
Аналитически в этом можно удостовериться, если записать параметрические уравнения винтовой линии и проварьировать входящий в них угол ϑ от 0° до 90°. И прямая, и окружность — предельные формы более общей пространственной кривой, получившей название винтовой линии. Правильная винтовая линия — единственная пространственная кривая постоянной кривизны. Этим и объясняется, почему мечи, вкладывающиеся в ножны, можно изготовить только в форме правильной винтовой линии (что выглядело бы несколько необычно) и двух ее предельных случаев — прямой и окружности.
Проекция винтовой линии на плоскость, перпендикулярную ее оси, имеет форму окружности. Спроецировав винтовую линию на плоскость, параллельную оси, мы получим синусоиду. В этом нетрудно убедиться, если снова воспользоваться параметрическими уравнениями кривой. Многие свойства синусоиды можно изучать по ее близкой родственнице — винтовой линии.
В этой связи мы хотим рассказать одну забавную историю-задачу, допускающую (при надлежащем подходе) очень простое решение. Внутри цилиндрической башни высотой 100 м ходит лифт. Снаружи башни имеется винтовая лестница, образующая с вертикалью постоянный угол ϑ = 60°. Диаметр башни 13 м.
Однажды мистер и миссис Пицца поднялись на лифте на смотровую площадку, расположенную на вершине башни. Их сын Томато Пицца предпочел идти наверх пешком. Когда он добрался до смотровой площадки, вид у него был не блестящий.