Разрезание плоскости фигуры даже на две конгруэнтные части может оказаться трудной задачей. На рис. 15 вы видите несколько фигур, на которых можете испытать силу своего геометрического воображения. Решения (способы разрезания) приведены в конце книги.
Еще один интересный класс задач на разрезание образуют задачи на разрезание одного заданного многоугольника на наименьшее число частей любой формы, из которых можно составить другой заданный многоугольник. Например, на сколько частей достаточно разрезать квадрат, чтобы из них можно было составить равносторонний треугольник? (На 4 части.) Наиболее полно теория разбиений и весь круг вопросов, связанных с разрезанием, изложен в книге Гарри Линдгрена «Занимательные задачи на разрезание»[4].
Мисс Евклид и ее кубики
Мисс Евклид поставила на кафедру большой деревянный куб.
Мисс Евклид. Сегодня я проведу с вами контрольную. Я задам вам всего 3 вопроса об этом кубе.
Мисс Евклид. Этот куб можно распилить на 64 единичных куба. Для этого требуется провести 9 разрезов.
Мисс Евклид. Если бы перед каждым разрезом части куба разрешалось бы перекладывать, то можно было бы ограничиться 6 разрезами. Мой первый вопрос к вам: как доказать, что число разрезов не может быть меньше 6?
Пока класс трудился над ответом на первый вопрос, мисс Евклид провела на двух гранях куба диагонали, проходящие через общую вершину.
Мисс Евклид. Мой следующий вопрос: чему равен угол между этими двумя диагоналями?
Прежде чем задать свой третий вопрос, мисс Евклид положила на верхнюю грань куба линейку.
Мисс Евклид. Как с помощью этой линейки проще всего измерять длину диагонали куба АВ?
На сколько вопросов мисс Евклид вы смогли бы ответить? Я смог ответить на 2 из 3 вопросов.
Решение задачи 1. Докажем, что куб 4×4×4 невозможно разрезать на 64 кубика менее чем 6 плоскими разрезами (при условии, что после каждого разреза части куба разрешается перекладывать). Рассмотрим для этого любой из 8 внутренних кубиков. Ни один из внутренних кубиков не имеет «готовых» граней, которые бы совпадали с гранями большого куба. Следовательно, каждую из 6 граней внутреннего куба необходимо выделить, для чего требуется провести 1 плоский разрез. Поскольку ни одна плоскость не может выделить более одной грани куба, то число разрезов, которые необходимо провести, чтобы высечь все 6 граней куба, должно быть не меньше 6.
Существует ли общий метод, позволяющий распилить любой прямоугольный параллелепипед с целочисленными длинами ребер на единичные кубы при минимальном числе разрезов (части параллелепипеда разрешается переставлять)? Да, такой метод существует и заключается в следующем. Рассмотрим 3 разных куба, длины ребер которых равны длине, ширине и высоте параллелепипеда. Для каждого куба определим минимальное число разрезов, которые необходимо провести, чтобы разделить его на слои единичной толщины. Для этого проведем плоский разрез перпендикулярно ребру куба через целую точку, расположенную как можно ближе к середине ребра (если в длине ребра укладывается четное число единиц, то распил делит ребро пополам; если же в длине ребра укладывается нечетное число единиц, то распил проходит на расстоянии половины единицы длины от середины ребра), переложим полученные части и будем повторять всю процедуру до тех пор, пока весь куб не распадется на слои единичной толщины. Сумма трех минимумов (по одному для каждого ребра) даст нам ответ задачи.
Например, чтобы распилить на единичные кубики прямоугольный параллелепипед 3×4×5, необходимо провести 7 плоских разрезов: 2 для ребра 3, 2 для ребра 4 и 3 для ребра 5. Доказательство этого алгоритма было впервые опубликовано в журнале Mathematics Magazine в 1952 г.
Решение задачи 2. Задача решается просто, если сообразить, что на еще одной грани куба можно провести третью диагональ, соединяющую концы диагоналей, проведенных мисс Евклид (рис. 16).
Три диагонали образуют равносторонний треугольник. Так как каждый из углов равностороннего треугольника равен 60°, то и угол между проведенными мисс Евклид диагоналями равен 60°.
Вторая задача мисс Евклид допускает изящное обобщение. Предположим, что мисс Евклид провела на поверхности куба две прямые, соединяющие середины A, B и C трех ребер (рис. 17). Чему равен угол ABC между этими прямыми?