Выбрать главу

Представим себе, что существует тепловая машина, состоящая из нагревателя, холодильника и рабочего тела. Машина является изолированной системой, т. е. ниоткуда не получает энергию и не отдаёт её внешней среде. Теплота переходит от нагревателя к холодильнику, заставляя рабочее тело совершать работу. Но в процессе этой работы количество теплоты в нагревателе, а следовательно, и его температура уменьшаются, а в холодильнике соответственно увеличиваются. Когда они сравняются, теплообмен прекратится, и работа в машине станет невозможна. Куда израсходовалась энергия, с помощью которой совершалась работа? Поскольку система изолирована, она никуда не могла исчезнуть, её количество осталось прежним, но она перешла из свободного состояния в связанное. Почему так получилось?

Рис. 13. Тепловая электростанция

Потому что в системе исчезла разница температур. Средняя кинетическая энергия молекул рабочего тела осталась прежней, но, поскольку температуры нагревателя и холодильника сравнялись, в движении молекул исчезла всякая направленность, оно стало беспорядочным, хаотичным. А между хаотичностью движения молекул и связанностью энергии существует прямая связь. Для того чтобы обладать свободной энергией, молекулы должны двигаться преимущественно в одном направлении, а для этого между частями системы должно существовать какое-либо различие. Чем больше это различие, тем эффективнее работает машина. При любом процессе часть свободной энергии передаётся окружающим молекулам и вызывает их хаотическое тепловое движение. Поэтому вся имеющаяся в машине свободная энергия не может быть превращена в полезную работу – часть её перейдёт в беспорядочное движение молекул и будет навсегда потеряна для практических целей. Степень этой потери определяется коэффициентом полезного действия (КПД) машины, который выражает отношение полезной работы к затраченной энергии. Этот коэффициент, даже теоретически, в идеальных машинах, не может достичь 100 %, а в реально существующих механизмах он значительно меньше. Так, КПД современных тепловых электростанций и двигателей внутреннего сгорания не превышает 50 % (рис. 13). В самых эффективных из существующих двигателей – мощных динамомашинах (генераторах), где электрическая энергия производится непосредственно из механической и где почти не происходит тепловых потерь, КПД может достигать 95 % (рис. 14).

Поэтому второе начало термодинамики в формулировке Кельвина выглядит так: «Невозможен процесс, единственный результат которого состоял бы в поглощении теплоты от нагревателя и полного преобразования этой теплоты в работу».

Рис. 14. Генератор постоянного тока (Музей электрических станций. Джорджтаун, Вашингтон) (автор фото Дж. Мейбл)

Теплоту невозможно просто отобрать у нагревателя, какое-то её количество надо обязательно передать холодильнику. А это значит, что холодильник должен получить свою долю энергии и именно на эту долю энергии уменьшится совершаемая работа. Из этого ни в коем случае не следует, что невозможен обратный процесс – полное преобразование других видов энергии в теплоту. При торможении автомобиля его кинетическая энергия полностью переходит в теплоту, что проявляется в нагревании покрышек, тормозных колодок и дороги при скольжении на тормозном пути. Однако заставить автомобиль двигаться, охладив все эти разогретые предметы, невозможно. Процесс рассеивания энергии протекает только в одном направлении. Таким образом, второе начало термодинамики утверждает, что в природе существует фундаментальная асимметрия: все природные процессы приводят к увеличению теплового движения молекул, т. е. к постепенному переходу энергии из свободного состояния в связанное. Обратный самопроизвольный процесс невозможен, и, для того чтобы увеличить в системе запас свободной энергии, требуется подвести её откуда-либо извне, допустим, из некой системы X, т. е. совершить над нашей системой работу. Однако в процессе извлечения работы из системы Х часть её свободной энергии превратится в энергию хаотического движения молекул, т. е. опять станет связанной энергией. В результате суммарная свободная энергия нашей системы и системы Х уменьшится, а их общая связанная энергия возрастёт. Мы можем добавлять последовательно новые источники свободной энергии – «систему Y», «систему и т. д. – результат будет тот же: суммарная свободная энергия этих систем будет уменьшаться, а их связанная энергия – возрастать. Поэтому можно сказать, что второе начало термодинамики утверждает, что все природные процессы постепенно переходят из упорядоченного состояния к хаотическому.