Выбрать главу

Оба эти соображения и натолкнули Кимуру на мысль, что большинство нуклеотидных замен должно быть селективно нейтрально и фиксироваться генетическим дрейфом. Соответствующие полиморфные аллели поддерживаются в популяции балансом между мутационным давлением и случайной (неизбирательной) элиминацией. Все сказанное Кимура и изложил в своей первой публикации по нейтральной эволюции (Kimura, 1968а).

Мотоо Кимура (род. в 1924).

В дальнейшем появилась целая серия статей Кимуры, в том числе в соавторстве (Kimura, 1968b, 1969, 1970 и др.; Kimura, Ohta, 1969, 1971), а также обобщающая монография (Kimura, 1983; рус. пер. — 1985). В этих трудах экспериментальные данные молекулярной биологии сочетались со строгими математическими расчетами, осуществленными самим автором на основе разработанного им математического аппарата. В книге, наряду с рассмотрением доводов в пользу новой теории, Кимура останавливается и на возможных возражениях и критике в ее адрес.

Одним из главных аргументов, свидетельствующих о справедливости теории нейтральности, является существование так называемых синонимных мутаций — изменений в составе триплетов оснований ДНК, не приводящих к изменениям в белках. Такие мутации существуют благодаря вырожденности генетического кода, проявляющейся в способности нескольких триплетов кодировать одну и ту же аминокислоту. Так, каждая из 9 аминокислот (лизин, тирозин, цистеин и др.) кодируется двумя различными триплетами, изолейцин — тремя, треонин, валин, аланин, пролин и глицин — четырьмя, а серин, лейцин и аргинин — даже шестью. Мутации ДНК, превращающие один триплет в другой в пределах одной кодовой группы, естественно, ничего не изменят в соответствующей белковой молекуле. Такие мутации должны быть нейтральными. Количество синонимных мутаций, по Кимуре, составляет примерно 24 % от общего числа возможных точковых мутаций.

Другой аргумент — относительное постоянство скорости эволюции каждого данного белка во всех филумах, определяемой числом замещений аминокислот в год. Такое постоянство трудно объяснить с позиций селекционизма хотя бы уже потому, что оно наблюдается в разных отрядах млекопитающих, условия жизни которых совершенно различны и которые, естественно, подвергаются различному давлению отбора. Согласно данным Кимуры, скорости эволюции белков определяются исключительно структурой и функциями их молекул, но отнюдь не условиями среды.

Кимура предложил способы количественного расчета скоростей эволюции белков в случаях нейтральных и полезных мутаций. В первом случае, когда мутантный аллель строго нейтрален, т. е. не изменяет адаптивную ценность особи, вероятность его фиксации и определяется по формуле:

u = 1/2Ne, (1)

где Ne — эффективная численность популяции, соответствующая ее размножающейся части.

Определим теперь скорость эволюции белка к, выраженную числом мутационных замен. Обозначим через v скорость мутирования на гамету на поколение. Поскольку в популяции из N диплоидных особей существует 2N хромосомных наборов, то в каждом поколении в популяции появляется 2Nv новых мутаций. Если процесс фиксации мутантных аллелей растягивается на длительное время, то скорость накопления мутационных замен в популяции в расчете на поколение будет равна произведению числа новых мутаций на вероятность их фиксации:

k = 2Nvu (2)

Подставив вероятность фиксации u из формулы (1) в формулу (2), получаем, что k=v. Это означает, что скорость эволюции белка не зависит от размера популяции и равна скорости мутирования в расчете на гамету (Kimura, 1968а; Кимура, 1985). Этот вывод в значительной мере справедлив и для «почти нейтральных мутаций», т. е. таких, коэффициент отбора которых намного меньше единицы, или

s < 1/2Ne (Kimura, 1968b).

В случае если мутантный аллель обладает явным селективным преимуществом, т. е. при этом

4Nes > 1,

мы имеем:

и = 2sNe/N. (3)

Подставив это выражение в формулу (2), получаем:

k = 4Nesv.

Это означает, что скорость эволюции белка зависит от эффективного размера популяции Ne, селективного преимущества мутантного аллеля s, а также от скорости v, с которой в каждом поколении возникают благоприятные мутантные гены. В таком случае скорость эволюции должна сильно зависеть от окружающей среды, будучи высокой для видов, осваивающих новые экологические условия, и низкой для видов, обитающих в стабильной среде.