Заслуга в установлении динамического типа изменчивости принадлежит целому ряду исследователей. Голубовский указывает, что с идеей разграничения структурных и динамических способов хранения и передачи наследственной информации первым выступил специалист по генетике простейших Дэвид Нэнни в 1957 г. (см.: Нэнни, 1961). Последний обратил внимание, что желательно учитывать преемственность динамических связей между взаимодействующими в клетке молекулами. В 1961 г. Ж. Моно и Ф. Жакоб разделили все гены на структурные и регуляторные (Моно, Жакоб, 1964). Согласно их концепции первые начинают функционировать при взаимодействии с белками-регуляторами. Прототипом динамической формы хранения и передачи информации послужила предложенная Моно и Жакобом простая модель из двух оперонов, циклически связанных друг с другом таким образом, что система может работать в двух режимах. Выбор состояния зависит от активности циркулирующих по цитоплазме белков-регуляторов. При воздействии на последние извне система способна переключаться на другой режим. Подобный переключатель контролирует, например, систему размножения фага лямбда у кишечной палочки. Важно понимать, что переход от одного режима функционирования генетической системы на другой происходит не вследствие изменения структуры гена, а в силу регуляции генной активности при посредстве виехромосомных факторов.
Эпигенетика и наследственность
Термин «эпигенетика» был предложен Уоддингтоном в 1947 г. как производный от аристотелевского понятия «эпигенез». Преемственность терминов, как видим, сохранилась, но их содержание не могло не измениться. Современная эпигенетика лишь отдаленно напоминает то, что понимали под эпигенезом в XVII–XVIII вв.
Эпигенетическая теория принимает, что становление видоспецифической организации, или адаптивной нормы, определяется целостными свойствами зародышевой клетки и действием корреляционных систем онтогенеза как системного объекта, а не суммой каких-то специфических частей зиготы или зародыша. Соответственно, каждый признак организма определяется всем его генотипом. При таком широком толковании слово «эпигенетика» (от греч. «эпи» — на, над и «генез» — возникновение, развитие), как нам представляется, можно было бы перевести как «развитие на надгенетическом уровне». В более узком толковании — в контексте генетики — Уоддингтон предложил называть эпигенетикой «ветвь биологии, изучающую причинные взаимодействия между генами и их продуктами, образующими фенотип» (Уоддингтон, 1970. С. 18). Эпигенетика включает изучение с позиций генетики двух главных составляющих онтогенеза — клеточной дифференцировки и морфогенеза. Элементарными событиями дифференцировки выступают процессы репрессий и дерепрессии генов, а элементарными событиями морфогенеза — возникновение третичной структуры белков и слабых взаимодействий между ними.
Становление эпигенетики связано с трудами Шмальгаузена и Уоддингтона. Шмальгаузен (1938, 1940, 1946) разработал учение о корреляциях как основе целостности организма в онто- и филогенезе, создал концепцию стабилизирующего (консервативного, по старому названию) отбора и выявил его роль в обеспечении устойчивости развития. Эта форма отбора — одна из немногих, которая реально работает в эволюции. Уоддингтон (1964, 1970) принял идею стабилизирующего отбора и создал концепции эпигенетического ландшафта и генетической ассимиляции.
Чтобы оценить всю важность эпигенетического подхода к пониманию онто- и филогенеза и осознать всю значимость сделанных в эпигенетике открытий, необходимо прежде всего уяснить, как она трактует природу наследственности.
Мы уже определяли это фундаментальное свойство всего живого как способность к сохранению исторической преемственности организации. Биологи в массе привыкли к тому, что носителями наследственности являются специализированные молекулы, изучение которых по определению всецело находится в компетенции генетики. В рамках СТЭ наследственность есть данность, не требующая причинного объяснения; она самостоятельный фактор, не зависимый от естественного отбора.
Это одностороннее и потому неправильное понимание проблемы. Шмальгаузен (1938) в свое время дал ей совсем иное решение. Он убедительно показал, что наследственность не есть свойство генов как элементов специальной субстанции, собранных в генотипе, а представляет собой «выражение взаимозависимостей частей в корреляционных системах развивающегося организма» (Шмальгаузен, 1982. С. 174). Иными словами, это исторически обусловленная концентрированная характеристика единой системы развития, продукт эволюции. Шмальгаузен представил наследственность как способность к устойчивому развитию при его типичном осуществлении. Отсюда вытекало, что главную функциональную основу наследственности составляет фенотип, что он устойчивее своего генотипа и что нормальный фенотип может осуществляться при большом разнообразии генотипов. Значит, генотип — далеко не единственный «орган» хранения и передачи наследственной информации. Этот вывод был основан Шмальгаузеном на большом фактическом материале. Аналогичных соображений он придерживался и в отношении особенностей исторического развития, с уверенностью констатируя, что «не изменения генотипа определяют эволюцию и ее направление. Наоборот, эволюция организма определяет изменение его генотипа» (Шмальгаузен, 1940. С. 57).