Исходя из этих предположений, Декарт объяснял различные явления, включая движение планет: вместо гравитации их движение вызвано частицами эфира, роящимися вокруг Солнца. Подобные же вихри существуют и вокруг других звезд. Солнечный вихрь смог захватить оказавшиеся поблизости мертвые звезды, так появились планеты, в том числе и Земля.
Описывая движение планет, картезианская физика смогла предложить только качественное, туманное объяснение этого явления. Ньютон же с помощью своих новых законов движения, включая гравитационное притяжение сквозь пустое пространство, смог построить количественную математическую физику, которая заменила декартовскую физику. Тем не менее исследовательская позиция Декарта влияла на научное мышление в течение всего периода коперниканской революции. Декарта часто называют отцом современной математики. Он объединил геометрию с алгеброй, создав аналитическую геометрию, в которой положение точки на математической плоскости определяется двумя координатами — x и у. Говорили, что корни этой идеи уходят в его детство, когда он наблюдал за мухой, ползавшей по потолку над его кроватью. Как описать путь мухи? Это можно сделать, если каждую точку потолка описать парой чисел (x:, у). В качестве примера можно привести прямоугольную систему координат. В ней расстояние между любыми двумя точками можно определить просто из разности координат: (расстояние)2 = (расстояние по x)2 + (расстояние по y)2.
Время в современном смысле ввел в науку Галилей. В своих опытах с шаром, катящимся вниз по наклонной плоскости, он вместо часов использовал биение собственного сердца. Кроме того, он измерял время, взвешивая воду, вытекшую через отверстие в сосуде, но затем он понял, что для этой цели можно использовать маятник. Рассказывают, что в возрасте 20 лет, когда он оказался на мессе в кафедральном соборе, его внимание привлекли люстры, свисающие с потолка на длинных цепях. От сквозняка они величественно раскачивались. Люстры были подвешены на цепях одинаковой длины, но имели разный вес. Однако раскачивались они при этом с одинаковой частотой. Это подтолкнуло Галилея к опыту, показавшему, что в действительности период качания зависит не от веса груза у маятника, а от его длины. Галилею пришла идея, что можно собрать часовой механизм, используя постоянные колебания маятника, если умудриться поддерживать эти колебания и механически считать их количество. С уменьшением длины маятника период становится короче, поэтому можно точно измерять короткие интервалы времени.
Идею маятниковых часов реализовал голландский физик Христиан Гюйгенс (1625–1695). В его маятниковых часах была решена проблема поддержания колебаний, а измерение времени происходило с ошибкой около 10 секунд в сутки, в отличие от существовавших до этого механических часов, дававших ошибку около 15 минут в сутки.
Возвращаясь к вопросу о движении Земли и имея в виду более поздние работы Ньютона по гравитации, укажем, что именно Гюйгенс в 1659 году определил, каким должно быть ускорение к центру, чтобы тело двигалось по круговой орбите. Он показал, как вычислить ускорение к центру: нужно разделить квадрат круговой скорости на радиус окружности. Например, на экваторе Земли скорость равна 464 м/с, а радиус Земли равен 6,380 x 106 м. Таким образом, центростремительное ускорение, необходимое для того, чтобы удержать воздух у поверхности Земли, равно (464 х 464)/6 380 000 = 0,0337 м/с2. С другой стороны, притяжение Земли придает телу центростремительное ускорение 9,8 м/с2, что гораздо больше необходимого значения. Прежде боялись, что вращение Земли может стать причиной ветра и сдуть воздух в космическое пространство. Приведенные выше вычисления показывают, что ускорение, вызванное гравитацией, гораздо больше, чем требуется для удержания воздуха у поверхности вращающейся Земли. Поэтому нет никакого риска, что воздух улетит в космос.
Первые астрономические наблюдения Галилея показали, насколько сильно даже маленький телескоп увеличивает возможности человеческого глаза. Телескоп собирает намного больше света, чем глаз. Это дает возможность увидеть гораздо более тусклые объекты, чем доступные невооруженному глазу. Например, в области Плеяд Галилей увидел 36 звезд вместо обычных 6. На фотографиях, полученных с помощью современных телескопов, в этой группе видны сотни звезд. Большой объектив значительно улучшает и разрешение. Это означает, что две близкие звезды, сливающиеся для невооруженного глаза в одно пятнышко, можно увидеть по отдельности в телескоп. Способность собирать больше света, чем глаз, и высокое разрешение дают возможность увидеть больше структур и тусклых объектов на звездном небе. Высокое разрешение позволяет более точно определять положения (координаты) звезд. А это очень важно при измерении расстояний до звезд, о чем мы расскажем в следующей главе.