Выбрать главу

Согласно основному выводу из его гипотезы, если электроны ведут себя как волны, они должны в каких-то случаях вести себя подобно свету. Самое удивительное, что еще в 1920 году подобное явление наблюдал физик Лаборатории Белла Клинтон Джозеф Дэвиссон. Он пропускал пучок электронов через пластинку из кристалла никеля и заметил некоторое постоянство в их рассеянии. Но только в 1927 году он понял, что речь шла о феномене дифракции электронов.

При помощи своей революционной идеи де Бройль получил и другой важный результат: он смог объяснить существование орбит электронов, о которых говорил Бор в своих постулатах. Результаты, которые легли в основу его диссертации, были опубликованы де Бройлем в нескольких небольших статьях, вышедших между сентябрем и октябрем 1923 года в журнале Compte Rendus Французской академии наук. Его идеи распространились тогда с быстротой молнии. Нидерландский физик Хендрик Лоренц писал в то время Эйнштейну: «Это первый слабый проблеск надежды в худшей из наших головоломок».

Наука нуждается в воображении, но воображение находится в ужасной смирительной рубашке знания.

Ричард Фейнман

Следующий шаг был сделан в 1925 году молодым немецким физиком Вернером Гейзенбергом. Он защитил свою докторскую диссертацию двумя годами ранее в Мюнхене, и его пренебрежение экспериментальной физикой, к слову сказать, принесло ему некоторые проблемы во время устного экзамена. Гейзенберг пришел к мысли, что для настоящего прогресса в физике следует отказаться от любой попытки «понять» внутреннюю работу атома. Он считал, что в теории, согласно которой электроны вращаются вокруг ядра, нет никакого смысла, так как никто их никогда не наблюдал. А вот фотоны, выпущенные электронами во время смены «орбиты», доступны для наблюдения, и только такого рода доказательства следует принимать во внимание для развития теории. В результате Гейзенберг создал матричную механику, с помощью которой он смог подтвердить выводы квантовой теории Бора. Почти в то же время, в 1926 году, австрийский физик Эрвин Шрёдингер осуществил синтез идей де Бройля и Гейзенберга, создав волновую механику, которая стала одним из основных «инструментов» физиков-теоретиков. По сути, волновая механика и матричная механика представляли собой разные формулировки одной и той же квантовой теории. Идеи Шрёдингера не понравились Гейзенбергу: они оставляли место для предположений, что эти «волны» реальны. Баталия между сторонниками двух формулировок достигла своей крайней степени, когда Макс Борн доказал, что эти математические инструменты служат только для расчета вероятности найти электрон в конкретной точке пространства. Все закончилось, когда Поль Дирак окончательно доказал, что Гейзенберг и Шрёдингер оба правы: их видения атомного мира были равноценны и легли в основу того, что мы называем квантовой механикой.

Начиная с этого момента разрыв с классическим миром — миром, который можно было увидеть невооруженным глазом, — стал окончательным. Квантовая механика предлагала иное видение: тело не находится в определенном месте, существует лишь некоторая вероятность, что оно там есть. А значит, тело может находиться в любой части Вселенной. Даже понятие причинности исчезает, и остается только вероятность. Мы можем кидать мячик о стену столько раз, сколько захотим, но нельзя утверждать, что он будет постоянно отскакивать: это утверждение только возможно верное. Всегда существует некоторая вероятность того, что мячик начнет двигаться совсем в другом направлении. На самом деле, как говорит об этом Фейнман в своих знаменитых лекциях по физике, «очень мелкие предметы ведут себя не так, как вы ожидаете на основании своего повседневного опыта». Нужно заплатить очень высокую цену, если желаешь понять секреты материи.

Опыт с двумя щелями

Ричард Фейнман утверждал, что этот опыт скрывает в себе тайну и волшебство квантовой теории:

«[Это] явление, которое невозможно, абсолютно невозможно объяснить с помощью классической теории и которое содержит в себе самую суть квантовой механики. Здесь коренится тайна».

РИС.З

Волна приближается к перегородке, в которой на небольшом расстоянии друг от друга прорезаны две очень узкие щели. При прохождении волны каждая из щелей сама становится источником волн, взаимодействующих между собой, образуя на экране детектора характерное изображение.