Выбрать главу

С электричеством тесно связана сила другого рода, назы­ваемая магнитной; ее тоже можно анализировать через поня­тие поля. Некоторые из качественных связей между этими си­лами видны в опыте с электронной трубкой (фиг. 12.3).

Фиг. 12.3. Электронная трубка.

На одном конце трубки помещен источник, испускающий поток элект­ронов, а внутри имеется устройство, разгоняющее электроны до большой скорости и посылающее часть их на светящийся экран на другом конце трубки. Световое пятно в центре экра­на, в месте ударов электронов, позволяет проследить за их путем. На пути к экрану пучок проходит сквозь узкую щель между параллельными металлическими пластинами, располо­женными, допустим, плашмя. К пластинам подведено напря­жение, позволяющее любую из них заряжать отрицательно. Напряжение создает между пластинами электрическое поле.

В первой части опыта отрицательное напряжение подается на нижнюю пластину, т. е. на ней образуется избыток элект­ронов. Одноименные заряды отталкиваются, и поэтому светящее­ся пятно на экране взлетает внезапно вверх. (Можно сказать и иначе: электроны «чувствуют» ноле и отвечают отклоне­нием вверх.) Затем переключим напряжение и зарядим отрица­тельно уже верхнюю пластину. Световое пятно на экране опу­стится вниз, показывая, что электроны пучка отталкиваются электронами верхней пластины. (Иначе говоря, электроны «ответили» на изменение направления поля.)

Во второй части опыта напряжение на пластины уже не подается, а вместо этого проверяется влияние магнитного поля на электронный пучок. Для этого необходим подковообразный магнит, достаточно широкий, чтобы «оседлать» практически всю трубку. Предположим, что мы подвели магнит снизу к трубке, обхватили им ее и направили полюсы кверху (в виде буквы U). Мы замечаем, что пятно на экране смещается, скажем кверху, когда магнит приближается снизу. Выходит, что магнит отталкивает пучок. Но не так все просто: если мы пере­вернем магнит, не переставляя его сторон, и приблизим его к трубке сверху, то пятно снова сдвинется вверх, т. е. вместо оттал­кивания наступило притяжение. А теперь вернем магнит в пер­воначальное положение, когда он обхватывал трубку снизу. Да, пятно по-прежнему отклоняется кверху; но повернем маг­нит на 180° вокруг вертикальной оси, чтобы он имел вид буквы U, но уже с переставленными полюсами. Смотрите-ка, пятно прыгает вниз и остается там, даже если мы переворачиваем те­перь U вверх ногами.

Чтобы понять такое своеобразное поведение, нужно приду­мать какую-то иную комбинацию сил. Объясняется все это вот как. Вдоль магнита, от полюса к полюсу, тянется магнитное поле. Оно направлено всегда от одного определенного полюса (который можно снабдить какой-нибудь меткой) к другому. Вращение магнита вокруг его оси не меняет направления поля, а перестановка полюсов местами меняет. Например, если электроны летят горизонтально по оси х, а магнитное поле тоже горизонтально, но направлено по оси у, то магнитная сила, действующая на движущийся электрон, направлена по оси z (вверх или вниз, это уже зависит от того, как направлено поле — по оси у или против нее).

Мы пока не дадим полного закона сил взаимодействия заря­дов, движущихся друг относительно друга в произвольных на­правлениях, потому что он чересчур сложен, но зато приведем формулы для случая, когда поля известны. Действие силы на заряженный предмет зависит от его движения; когда предмет неподвижен, сила, действующая на него, считается пропорцио­нальной заряду с коэффициентом, называемым электрическим полем. Когда тело движется, сила изменяется, и поправка, но­вый «кусок» силы, оказывается линейно зависящей от скорости и направленной поперек скорости v и поперек другой вектор­ной величины — магнитной индукции В. Когда составляющие электрического поля Е и магнитной индукции В суть соответ­ственно х, Еу, Ег,) и х, By, Bz), a составляющие скорости v суть (vx, vy, vz), то составляющие суммарной электрической и магнитной сил, действующих на движущийся заряд q, таковы: