Выбрать главу

Фиг. 13.3. Замкнутый путь обхода в поле тяготения.

Мы должны доказать следующее предположение: раз трения нет, тело должно вернуться ни с меньшей, ни с большей скоростью, а как раз с такой, чтобы еще и еще делать круги по этому замк­нутому пути. Или, другими словами, вся работа, произведенная в движении по замкнутому пути, должна быть нулем для сил тяжести, потому что если бы она не была нулем, то можно было бы получить энергию за счет такого движения тела. (Если бы работа оказалась меньше нуля, так что скорость в конце обхода уменьшилась бы, то для получения энергии стоило бы только повернуть обратно; силы ведь зависят не от направления дви­жения, а только от положения. Если в одном направлении рабо­та получится с плюсом, то в обратном она будет с минусом; лю­бая ненулевая работа означает создание вечного двигателя.) Так что же, действительно ли работа равна нулю? Попробуем показать, что да. Сперва мы лишь на пальцах поясним, почему это так, а уж потом оформим математически. Положим, мы вы­думали траекторию, показанную на фиг. 13.3; масса падает от 1 к 2, поворачивает до 3, обратно поднимается к 4, затем через 5, 6, 7, 8 движется обратно к 1. Все линии идут либо по радиусу, либо по кругу с центром М. Какая работа совершается на таком пути? Между 1 и 2 она равна произведению GMm

на разность 1/r в этих точках:

От 2 до З сила в точности направлена поперек движения, и W23=0. От 3 к 4

Но ведь r2=r3, r4=r5, r6 =r7, r8=r1. Поэтому W=0.

Но возникает подозрение, не слишком ли эта кривая проста. А что даст настоящая траектория? Что ж, попробуем настоящую. Сразу же ясно, что ее можно достаточно точно пред­ставить как ряд зазубрин (фиг. 13.4) и поэтому... и т. д., что и требовалось доказать.

Фиг. 13.4. «Плавный» путь об­хода.

Показан увеличенный отрезок этого пути и близкая к нему траектория, состоящая из радиальных и круговых участков, а также один из зубцов этой траектории.

Но надо еще посмотреть, действительно ли работа обхода вокруг маленького треугольника тоже равна нулю. Увеличим один из треугольников (см. фиг. 13.4). Равны ли работы по пути от а к b и от b к с работе, совершаемой, когда идешь напрямик от а к с? Пусть сила действует в каком-то направлении. Расположим треугольник так, чтобы у его катета bc было как раз такое направление. Предположим также, что сам треугольник так мал, что сила всюду на нем постоянна. Какова работа на отрезке ас? Она равна

(поскольку сила постоянна). Теперь определим работу на двух катетах. На вертикальном катете ab сила перпендикулярна к ds, так что работа равна нулю. На горизонтальном катете bc

Мы убеждаемся таким образом, что работа обхода по бокам ма­ленького треугольника такая же, как и по склону, потому что scosq равно х. Мы уже показали прежде, что работа при дви­жении по зазубринам (как на фиг. 13.3) равна нулю, а теперь видим, что производимая работа одинакова, независимо от того, движемся ли мы по зазубринам или срезаем путь между ними (если только зазубрины малы, но ведь ничто не мешает сделать их такими); поэтому работа обхода по любому замкну­тому пути в поле тяготения равна нулю.

Это очень примечательный результат. Благодаря ему нам становятся известны такие подробности о движении планет, о которых мы раньше и не догадывались. Выясняется, что когда планета вертится вокруг Солнца одна, без спутников и в отсут­ствие каких-либо других сил, то квадрат ее скорости минус некоторая константа, деленная на расстояние до Солнца, вдоль орбиты не меняется. Например, чем ближе планета к Солнцу, тем быстрее она движется. Но насколько быстрее? А вот на­сколько: если вместо движения вокруг Солнца вы толкнете ее к Солнцу с той же скоростью и подождете, пока она не упадет на нужное расстояние, то приобретенная скорость будет как раз такой, какой планета обладает на этой орбите, потому что полу­чился просто другой пример сложного пути обхода. Если пла­нета вернется по такому пути обратно, ее кинетическая энергия окажется прежней. Поэтому независимо от того, движется ли она по настоящей невозмущенной орбите или же по сложному пути (но без трения), кинетическая энергия в момент возвраще­ния на орбиту оказывается как раз такой, какой нужно.