Выбрать главу

Данные о размере нашей Галактики дают ключ к определе­нию еще больших межгалактических расстоянии. На фиг. 5.7 приведена фотография галактики, которая по форме очень похожа на нашу Галактику.

Фиг. 5.7. Спиральная галак­тика, подобная нашей. Если предположить, что диаметр этой галактики равен диаметру нашей Галактики, та, исходя из ее кажущегося размера, можно подсчи­тать расстояние; оно оказывается равным 30 миллионам световых лет (3·1023 м).

Возможно, что и размер ее тот же. (Есть еще ряд соображений, согласно которым размеры всех галактик приблизительно одинаковы.) А если это так, то можно узнать расстояние до нее. Мы измеряем угловой размер галак­тики (т. е. угол, который она занимает на небесном своде), знаем ее диаметр, а стало быть, можем вычислить расстояние. Опять триангуляция!

Недавно с помощью гигантского Паломарского телескопа были получены фотографии неимоверно далеких галактик. Одна из этих фотографий приведена на фиг. 5.8.

Фиг. 5.8. Наиболее удаленный от нас объект ЗС295 в созвездии Во­лопаса (указан стрелкой), кото­рый измерялся в 1960 г. с по­мощью 200-дюймового телескопа.

Сейчас полагают, что расстояние до некоторых из них приблизительно равно полови­не размера Вселенной (1026 м) — наибольшего расстояния, ко­торое можно себе представить!

§ 7. Малые расстояния

Обратимся теперь к малым расстояниям. Подразделить метр просто. Без особых трудностей можно разделить его на тысячу равных частей. Таким же путем, хотя и несколько сложнее (используя хороший микроскоп), можно разделить миллиметр на тысячу частей и получить микрон (миллионную долю метра). Однако продолжать это деление становится трудно, поскольку невозможно «увидеть» объекты, меньшие, чем длина волны види­мого света (около 5·10-7 м).

Все же мы не останавливаемся на том, что недоступно глазу. С помощью электронного микроскопа можно получить фотогра­фии, помогающие увидеть и измерить еще меньшие объекты — вплоть до 10-8м (фиг. 5.9).

Фиг. 5.9. Фотография вирусов, полученная с помощью электрон­ного микроскопа. Видна «большая» сфера, показанная для сравнения: диаметр ее равен 2·10-7 м, или 2000 Е.

А с помощью косвенных измерений (своего рода триангуляции в микроскопическом масштабе) мож­но измерять все меньшие и меньшие объекты. Сначала из наблю­дений отражения света короткой длины волны (рентгеновских лучей) от образца с нанесенными на известном расстоянии мет­ками измеряется длина волны световых колебаний.

Затем по картине рассеяния того же света на кристалле можно опреде­лить относительное расположение в нем атомов, причем резуль­тат хорошо согласуется с данными о расположении атомов, по­лученными химическим путем. Таким способом определяется диаметр атомов (около 10-10 м).

Дальше в шкале расстояний имеется довольно большая неза­полненная «щель» между атомными размерами 10-10 м и в 105 раз меньшими ядерными размерами (около 10-15 м). Для опре­деления ядерных размеров применяются уже совершенно дру­гие методы: измеряется видимая площадь s, или так называемое эффективное поперечное сечение, Если же мы хотим определить радиус, то пользуемся формулой s = pr2, поскольку ядра мо­жно приближенно рассматривать как сферические.

Эффективные сечения ядер можно определить, пропуская пучок частиц высокой энергии через тонкую пластинку вещества и измеряя число частиц, не прошедших сквозь нее. Эти высоко­энергетические частицы прорываются сквозь легкое облачко электронов, но при попадании в тяжелое ядро останавливаются или отклоняются. Предположим, что у нас имеется пластинка толщиной 1 см. На такой толщине укладывается приблизитель­но 108 атомных слоев. Однако ядра настолько малы, что вероят­ность того, что одно ядро закроет другое, очень незначительна. Можно себе представить, что высокоэнергетическая частица, налетающая на пластинку углерода толщиной 1 см, «видит» при­близительно то, что в сильно увеличенном масштабе показано на фиг. 5.10.

Фиг. 5.10. Воображаемая пла­стинка углерода толщиной 1 см при сильном увеличении (если бы были видны только ядра атомов).