Выбрать главу

Фиг. 6.5. Три примера случайного блуждания.

По горизонтали отложено число шагов N, по вертикали координата

D(N), т. е. чистое расстояние от начальной точки.

(При построении их в качестве случай­ной последовательности решений о том, куда сделать следующий шаг, использовались результаты подбрасывания монеты, при­веденные на фиг. 6.1.)

Что можно сказать о таком движении? Ну, во-первых, можно спросить: как далеко мы в среднем продвинемся? Нужно ожи­дать, что среднего продвижения вообще не будет, поскольку мы с равной вероятностью можем идти как вперед, так и назад. Однако чувствуется, что с увеличением N мы все с большей вероятно­стью можем блуждать где-то все дальше и дальше от начальной точки. Поэтому возникает вопрос: каково среднее абсолютное расстояние, т. е. каково среднее значение \D\? Впрочем, удобнее иметь дело не с |D|, а с D2; эта величина положительна как для положительного, так и для отрицательного движения и поэтому тоже может служить разумной мерой таких случайных блу­жданий.

Можно показать, что ожидаемая величина D2N равна просто N — числу сделанных шагов. Кстати, под «ожидаемой величи­ной» мы понимаем наиболее вероятное значение (угаданное наилучшим образом), о котором можно думать как об ожидаемом среднем значении большого числа повторяющихся процессов

блуждания. Эта величина обозначается как <D2N> и называется, кроме того, «средним квадратом расстояния». После одного

шага D2 всегда равно +1, поэтому, несомненно, <D21> = 1. (За единицу расстояния всюду будет выбираться один шаг, и поэтому я в дальнейшем не буду писать единиц длины).

, Ожидаемая величина D2N для N>1 может быть получена из dn-1. Если после (N-1) шагов мы оказались на расстоянии DN-1, то еще один шаг даст либо DN=DN--1+1, либо DN=DN-1 -1. Или для квадратов

(6.7)

Если процесс повторяется большое число раз, то мы ожидаем, что каждая из этих возможностей осуществляется с вероятно­стью /2, так что средняя ожидаемая величина будет просто средним арифметическим этих значений, т. е. ожидаемая вели­чина D2N будет просто D2N-1+1. Но какова величина D2N_1, вер­нее, какого значения ее мы ожидаем? Просто, по определению, ясно, что это должно быть «среднее ожидаемое значение» <D2N-1>, так что

<D2N>=<D2N-1+1. (6.8)

Если теперь вспомнить, что <D21> = 1, то получается очень простой результат:

<D2N>=N. (6.9)

Отклонение от начального положения можно характеризо­вать величиной типа расстояния (а не квадрата рас­стояния); для этого нужно просто извлечь квадратный корень из <.D2N> и получить так называемое «среднее квадратичное рас­стояние» DC-K:

DC-K=Ц<D2> = ЦN. (6.10)

Мы уже говорили, что случайные блуждания очень похожи на опыт с подбрасыванием монет, с которого мы начали эту главу. Если представить себе, что каждое продвижение вперед или назад обусловливается выпадением «орла» или «решки», то DN будет просто равно No-NP, т. е. разности числа выпа­дений «орла» и «решки». Или поскольку No+Np=N(где N — полное число подбрасываний), то DN= 2No-N. Вспомните, что раньше мы уже получали выражение для ожидаемого рас­пределения величины no [она обозначалась тогда через k; см. уравнение (6.5)]. Ну а поскольку N — просто постоянная, то теперь такое же распределение получил ось и для D. (Выпаде­ние каждого «орла» означает невыпадение «решки», поэтому в связи между no и D появляется множитель 2.) Таким образом, на фиг. 6.2 график представляет одновременно и распределение расстояний, на которые мы можем уйти за 30 случайных шагов k=15 соответствует D = 0, a k = 16 соответствует D= 2 и т. д.).