Выбрать главу

(6.19)

Ну а поскольку ширина кривых на фиг. 6.7 пропорциональна ЦN, то, чтобы сохранить ту же площадь, их высота должна быть пропорциональна 1/ЦN.

Плотность вероятности, которую мы только что описали, встречается наиболее часто. Она известна также под названием нормальной, или гауссовой, плотности вероятности и записывается в виде

(6.20)

причем величина s называется стандартным отклонением.

В нашем случае s = ЦN или ЦNSc-k, если средняя квадратичная длина шага отлична от единицы.

Мы уже говорили о том, что движения молекул или каких-то других частиц в газе похожи на случайные блуждания. Представьте себе, что мы открыли в комнате пузырек с духами или каким-то другим органическим веществом. Тотчас же молекулы его начнут испаряться в воздух. Если в комнате есть какие-то воздушные течения, скажем циркуляция воздуха, то они будут переносить с собой пары этого вещества. Но даже в совершенно спокойном воздухе молекулы будут распространяться, пока не проникнут во все уголки комнаты. Это можно определить по запаху или цвету. Если нам известен средний размер «шага» и число шагов в секунду, то можно подсчитать вероятность обна­ружения одной или нескольких молекул вещества на некотором расстоянии от пузырька через какой-то промежуток времени. С течением времени число шагов возрастает и газ «расползается» по комнате, подобно нашим кривым на фиг. 6.7. Длина шагов и их частота, как вы узнаете впоследствии, связаны с температурой и давлением воздуха в комнате.

Вы знаете, что давление газа вызывается тем, что молекулы его бомбардируют стенки сосуда. Позднее, когда мы подойдем к количественному описанию этого явления, нам понадобится знать, с какой скоростью движутся молекулы, ударяясь о стен­ку, поскольку сила их ударов зависит от скорости. Однако говорить о какой-то определенной скорости молекул совершенно невозможно. В этом случае необходимо использовать вероятно­стное описание. Молекула может иметь любую скорость, но некоторые скорости предпочтительнее других. Все происходя­щее в газе можно описать, сказав, что вероятность того, что дан­ная молекула движется с какой-то скоростью между v и v+Dv, будет равна p(v)Dv, где р(v) — плотность вероятности, которая зависит от скорости v. Позднее я расскажу, как Максвелл, используя общие понятия и идеи теории вероятности, нашел математическое выражение для функции p(v). Примерный вид функции p(v) показан на фиг. 6.9.

䚠ᢜ

Фиг. 6.9. Распределение молекул газа по скоростям.

Скорость может иметь любую величину, однако больше шансов за то, что она окажется где-то в окрестности наиболее вероятного или ожидаемого значения

<v>.

О кривой, показанной на фиг. 6.9, часто говорят в несколько ином смысле. Если мы возьмем газ, заключенный в каком-то сосуде (скажем, объемом 1 л), то окажется, что в нем имеется огромное количество молекул (N » 1022). Поскольку р(v)Dv — вероятность того, что первая попавшаяся молекула будет лететь со скоростью, находящейся в интервале Dv, то, по определе­нию, ожидаемое число молекул <DN> со скоростью, находя­щейся в этом же интервале, будет равно

<DN>=Np(v) Dv. (6.21)

Поэтому Np (v) можно назвать «распределением молекул по скоростям». Площадь под кривой между двумя значениями ско­ростей vl и v2 [заштрихованная область на фиг. 6.9 для кривой Np(v)] представляет ожидаемое число молекул со скоростями между v1 и v2 . Но в газе, который содержит обычно огромное число молекул, отклонения от ожидаемого значения будут очень малы (порядка 1/ЦN), поэтому часто мы выбрасываем слово «ожидаемое» и говорим просто: «Число молекул со скоростями между v1 и v2 равно площади заштрихованного участка».Однако нужно все-таки помнить, что речь в таких случаях всегда идет о вероятном числе.

§ 5. Принцип неопределенности