Выбрать главу

vx=dx/dt (8.11)

а вертикальная составляющая, или y-компонента, равна

vy=dy/dt (8.12)

В случае трех измерений необходимо еще добавить

vz=dz/dt. (8.13)

Как, зная компоненты скорости, определить полную ско­рость в направлении движения? Рассмотрим в двумерном случае два последовательных положения частицы, разделенных корот­ким интервалом времени Dt = t2-t1 и расстоянием Ds. Из фиг. 8.3 видно, что

(Значок » соответствует выражению «приблизительно равно».)

Фиг. 8.3. Описание движения тела на плоскости и вычисление его скорости.

Средняя скорость в течение интервала Dt получается простым делением: Ds/Dt. Чтобы найти точную скорость в момент t, нужно, как это уже делалось в начале главы, устремить Dt к нулю. В результате оказывается, что

В трехмерном случае точно таким же способом можно полу­чить

Ускорения мы определяем таким же образом, как и скорости: x-компонента ускорения ах определяется как производная от x-компоненты скорости vx (т. е. ax=d2x/dt2 вторая производ­ная по времени) и т. д.

Давайте рассмотрим еще один интересный пример смешан­ного движения на плоскости. Пусть шарик движется в горизон­тальном направлении с постоянной скоростью u и в то же время падает вертикально вниз с постоянным ускорением g. Что это за движение? Так как vx=dxldt=u и, следовательно, скорость vx постоянна, то

x=ut, (8.17)

а поскольку ускорение движения вниз постоянно и равно -g, то координата у падающего шара дается формулой

y= -1/2gt2. (8.18)

Какую же кривую описывает наш шарик, т. е. какая связь между координатами x и y? Из уравнения (8.18), согласно (8.17), можно исключить время, поскольку t=x/u, после чего находим

y=-(g/2u2)x2 (8.19)

Эту связь между координатами х и у можно рассматривать как уравнение траектории движения шарика. Если изобразить ее графически, то получим кривую, которая называется параболой (фиг. 8.4).

Фиг. 8.4. Парабола, которую описывает падающее тело, бро­шенное с горизонтальной началь­ной скоростью.

Так что любое свободно падающее тело, будучи бро­шенным в некотором направлении, движется по параболе.

Глава 9

ДИНАМИЧЕСКИЕ ЗАКОНЫ НЬЮТОНА

§ 1. Импульс и сила

§ 2. Компоненты ско­рости, ускорения и силы

§ 3. Что такое сила?

§ 4. Смысл динами­ческих уравне­ний

§ 5. Численное реше­ние уравнении

§ 6. Движение планет

§ 1. Импульс и сила

Открытие законов динамики или законов движения стало одним из наиболее драмати­ческих моментов в истории науки. До Ньютона движение различных тел, например планет, представлялось загадкой для ученых, но после открытия Ньютона все вдруг сразу стало по­нятно. Смогли быть вычислены даже очень слабые отклонения от законов Кеплера, обус­ловленные влиянием других планет. Движение маятника, колебания груза, подвешенного на пружине, и другие непонятные до того явления раскрыли свои загадки благодаря законам Ньютона. То же самое можно сказать и об этой главе. До нее вы не могли рассчитать, как движется грузик, прикрепленный к пружине, не говоря уже о том, чтобы определить влияние Юпитера и Сатурна на движение Урана. Но после этой главы вам будет доступно и то и дру­гое!