Выбрать главу

Закон сохранения полного импульса некоторого числа взаимодействующих частиц в отсутствие внешних сил можно записать в виде

m1v1+m2v2 +m3v3+ ...=const, (10.3)

где mi и vi — просто масса и скорость частицы соответствую­щего номера. Однако для каждой из этих частиц Второй закон Ньютона

f=(d/dt)(mv) (10.4)

пишется для любой составляющей полной силы и импульса в любом заданном направлении, так что x-компонента силы, действующей на частицу, равна скорости изменения x-компоненты импульса этой частицы

fx=(d/dt)(mvx). (10.5)

Точно такие же формулы можно написать для у- и z-компонент. Это означает, что уравнение (10.3) фактически представляет собой три уравнения: по одному на каждую из компонент.

Существует еще одно интересное следствие Второго закона Ньютона, кроме закона сохранения импульса. Доказательст­вом его мы будем заниматься позднее, а сейчас я просто рас­скажу вам о нем. Следствие или, скорее, принцип состоит в том, что законы физики не изменяются от того, стоим ли мы на месте или движемся равномерно и прямолинейно. Пусть, на­пример, на быстро летящем самолете ребенок играет с мячиком. Наблюдательный ребенок сразу заметит, что мячик прыгает точно так же, как и на земле. Иначе говоря, законы движения для ребенка в самолете (если только последний не меняет скорости) выглядят одинаково как на поле аэродрома, так и в полете. Этот факт известен под названием принципа относи­тельности. В том виде, в котором он рассматривается здесь, мы будем называть его «принципом относительности Галилея» или «галилеевской относительностью», чтобы не путать его с более тщательным анализом, проделанным Эйнштейном, но об этом несколько позже.

Таким образом, из закона Ньютона мы вывели закон со­хранения импульса, а теперь давайте посмотрим, какие спе­цифические законы описывают соударение и рассеяние частиц. Однако для разнообразия, а также чтобы продемонстрировать типичные рассуждения, которыми мы часто пользуемся в фи­зике в других случаях, когда, скажем, не известны законы Ньютона и должен быть принят иной метод рассмотрения, да­вайте обсудим законы рассеяния и соударения с совершенно другой точки зрения. Мы будем исходить из принципа относи­тельности Галилея и в конце рассуждений придем к закону сохранения импульса.

Итак, начнем с утверждения, что законы природы не изме­няются от того, что мы движемся прямолинейно с некоторой скоростью или стоим на месте. Однако прежде чем обсуждать процессы, в которых два тела сталкиваются и слипаются или разлетаются в стороны, давайте рассмотрим случай, когда эти два тела связаны между собой пружинкой или чем-то в этом роде, а затем вдруг освобождаются и разлетаются под дей­ствием этой пружинки или, быть может, небольшого взрыва в разные стороны. Кроме того, рассмотрим движение только в одном направлении. Предположим сперва, что эти два тела совершенно одинаковы и расположены симметрично. Когда между ними произойдет взрыв, одно из них полетит направо с некоторой скоростью v. Тогда естественно, что другое полетит налево с той же самой скоростью v, поскольку оба тела подобны и нет никаких причин считать, что левая сторона окажется предпочтительнее правой. Итак, с телами должно происходить нечто симметричное. Этот пример показывает, насколько по­лезны рассуждения такого рода в различных задачах. Но они не всегда столь ясны, когда затуманены формулами.

Таким образом, первый результат нашего эксперимента — одинаковые тела имеют одинаковую скорость. Но предположим теперь, что тела сделаны из различного материала, скажем один из меди, а другой из алюминия, но массы их равны. Мы будем предполагать, что если проделать наш опыт с двумя равными массами, то несмотря на то, что тела не одинаковы, скорости их тем не менее будут равны. В этом месте мне могут возразить: «Но ведь вы можете сделать и обратное. Вам незачем было это предполагать. Вы можете определить массы как рав­ные, если они в нашем эксперименте приобретают одинаковую скорость». Давайте же примем это предложение и устроим не­большой взрыв между кусочком меди и очень большим куском алюминия, который настолько тяжел, что едва может быть сдвинут с места, тогда как медь стремительно отлетает. Это го­ворит о том, что алюминия слишком много. Уменьшим его ко­личество и оставим лишь совсем маленький кусочек. Если устроить взрыв снова, то отлетит уже алюминий, а медь почти не сдвинется. Значит, сейчас слишком мало алюминия. Очевид­но, что должно существовать какое-то промежуточное количе­ство, которое можно постепенно подбирать, пока скорости раз­лета не станут равными. Теперь мы можем сказать, что раз равны скорости этих кусков, то массы их мы тоже будем считать равными (т. е. фактически мы переворачиваем сделанное ранее утверждение, что равные массы будут иметь одинаковую ско­рость). Самое интересное здесь то, что физический закон пре­вращается просто в определение. Но тем не менее какой-то физический закон здесь все же есть, и если мы примем такое определение равенства масс, то этот закон можно найти сле­дующим образом.