Выбрать главу

Оказывается, что в квантовой механике импульс тоже не mv, а нечто совсем другое. Здесь уже трудно определить точно, что же такое скорость частицы, но импульс все-таки существует. Разница же состоит в том, что когда частицы действуют как частицы, то их импульс по-прежнему mv, но когда они дейст­вуют как волны, то импульс уже измеряется числом волн на 1 см: чем больше волн, тем больше импульс. Однако, несмотря на это различие, закон сохранения импульса справедлив и в квантовой механике. Неверными оказались уравнение Ньютона f = ma и все его выводы закона сохранения импульса, тем не менее в квантовой механике в конце концов этот закон продолжает действовать!

Глава 11

ВЕКТОРЫ

§ 1. Симметрия в физике

§ 2. Переносы начала

§ 3. Вращения

§ 4. Векторы

§ 5. Векторная алгебра

§ 6. Законы Ньютона в векторной записи

§ 7. Скалярное произведение векторов

§ 1. Симметрия в физике

В этой главе мы вводим понятие, которое среди физиков известно под названием симме­трия законов физики. Слово «симметрия» употребляется здесь в несколько необычном смыс­ле, и поэтому нужно его определить. Как же определить симметрию какого-либо предмета? Когда мы говорим, что изображение симметрично, то этим мы хотим сказать, что одна его часть такая же, как другая. Профессор Герман Вейль дал такое определение симметрии: предмет симметричен, если его можно подвергнуть какой-либо операции, после которой он будет выглядеть как и вначале. Например, если мы повернем вазу на 180° вокруг вертикальной оси и она не изменит своего внешнего вида, то мы говорим, что обе стороны вазы симметричны. Мы будем понимать определение Вейля в более широком смысле и говорить о симметрии зако­нов физики.

Предположим, что где-то мы установили сложную машину со множеством зацеплений, с какими-то маховиками, шатунами и т. п. Предположим теперь, что в каком-то другом месте мы собрали такое же устройство, все час­ти которого являются точной копией частей прежней машины, причем сохранены все разме­ры и ориентация отдельных ее частей, все то же самое, только перенесено на некоторое рас­стояние. Затем мы запустим обе машины в оди­наковых условиях и посмотрим, будут ли они работать совершенно одинаково? Будут ли дви­жения отдельных частей одной машины повто­рять в точности соответствующие движения другой? Вообще говоря, ответ может быть от­рицательным, потому что мы можем ведь выбрать для второй машины неудачное место, скажем поставить ее так, что какие-то ее части будут при работе ударяться о стенку, тогда машина вовсе не будет работать.

Любая физическая идея требует здравого смысла при своем осуществлении, ведь это не чисто математические или абстракт­ные идеи. Нужно понимать, что мы имеем в виду, когда говорим, что при перенесении какого-либо устройства в другое место на­блюдаются те же явления. Под этим мы понимаем, что мы пере­двигаем все, что можно передвинуть. Если же при этом явление в чем-то изменяется, то мы предположим, что что-то послужило помехой, и займемся изучением причин. Если мы ничего не обнаружим, то объявим, что физические законы не обладают ожидаемой симметрией. Но если физические законы все-таки обладают симметрией, то мы найдем причину помех, во всяком случае мы надеемся найти ее. Осмотревшись, мы обнаружим, на­пример, что работе машины мешает стена. Основной вопрос со­стоит в следующем: если мы достаточно хорошо изучим наши устройства, если все основные источники сил имеются внутри аппарата и если на другое место передвинуть все, что следовало передвинуть, то будут ли законы меняться? Будет ли машина на новом месте работать так, как раньше?