Выбрать главу

v=dr/dt.

Постараемся нагляднее представить себе, что такое ско­рость и почему она вектор. Далеко ли продвинется частица за малое время Dt? Ответ: на Dr, т. е. если частица находится «здесь» в первое мгновение, а «там» — во второе, то векторная разность положений частицы равна вектору Dr=r2-r1. расположенному вдоль направления движения. Как это выглядит, показано на фиг. 11.6. Если разделить этот вектор на промежуток времени Dt = t2-t1, то мы получим вектор «средней скорости».

Иначе говоря, под вектором скорости мы понимаем предел разности радиус-векторов, соответствующих моментам t+Dt и t, деленной на Dt при Dt, стремящемся к нулю:

Скорость есть вектор постольку, поскольку она равна разности двух векторов. Это верно также и потому, что составляющие этого вектора равны dx/dt, dy/dt, dz/dt. Подумав над тем, что сейчас было проделано, мы придем к выводу, что, продиффе­ренцировав любой вектор по времени, мы снова получим какой-то новый вектор. Таким образом, имеется несколько способов получать новые векторы: 1) умножая вектор на постоянное число; 2) дифференцируя вектор по времени; 3) складывая два вектора или вычитая.

§ 6. Законы Ньютона в векторной записи

Чтобы записать законы Ньютона в векторной форме, мы должны поучиться еще кое-чему и определить вектор ускоре­ния. Этот вектор равен производной по времени вектора скоро­сти, причем легко показать, что его составляющие равны вто­рым производным х, у и z no t:

После этого законы Ньютона можно записать таким образом: или ma = F, (11.13)

m(d2r/dt2)=F (11.14)

Фиг. 11.6. Перемещение частиц за малое время Dt=t2-t1,.

Теперь задача о доказательстве инвариантности законов Нью­тона относительно вращений сводится к следующему: нужно доказать, что а (ускорение) есть вектор; это мы уже сделали. Затем нужно доказать, что F (сила) есть вектор; это мы предпола­гаем. Следовательно, если сила есть вектор, то уравнение (11.13) будет выглядеть одинаково во всех системах координат, ибо нам известно, что ускорение тоже вектор. Запись уравнений в виде, не содержащем явно х, у, z, привлекательна тем, что нам нет необходимости выписывать три уравнения каждый раз, ког­да мы хотим написать законы Ньютона или другие законы фи­зики. Мы записываем то, что выглядит как один закон, хотя фактически, конечно, это три закона для каждой оси системы координат, потому что любое векторное уравнение содержит в себе утверждение, что все составляющие равны.

Тот факт, что ускорение — это скорость изменения вектора скорости, помогает найти ускорение в любых, казалось бы, трудных обстоятельствах. Предположим, например, что части­ца, двигаясь по какой-то сложной кривой (фиг. 11.7), имеет в момент t1 скорость v1, а несколько позже, в момент t2,скорость v2. Чему равно ускорение? Ответ: ускорение равно разности скоростей, деленной на малый промежуток времени; значит, нужно знать разность скоростей. Как же найти эту разность? Чтобы найти разность двух векторов, проведем вектор через концы векторов v2 и v1, иначе говоря, начертим вектор D в ка­честве разности этих двух векторов. Верно? Нет! Мы можем поступать так только тогда, когда начала векторов расположе­ны в одной точке! Вычитать векторы, приложенные к разным точкам, бессмысленно. Остерегайтесь этого! Чтобы вычесть векторы, нужно начертить другую схему. На фиг. 11. 8 векторы v1 и v2 перенесены параллельно и равны их двойникам, изоб­раженным на фиг. 11.7.

Фиг. 11 .7. Криволинейная траек­тория.

Фиг. 11.8, Диаграмма для вычисления ускорения.

Теперь можно поговорить об ускорении. Ускорение, конечно, просто равно Dv/Dt. Интересно заметить, что разность скоростей можно разделить на две части: можно представить себе, что ускорение состоит из двух составляющих: Dv — вектора, параллельного касательной к пути, и вектора Dv, перпендикулярного к этой касательной. Эти векторы пока­заны на фиг. 11.8. Касательное к пути ускорение равно, есте­ственно, лишь изменению длины вектора, т. е. изменению вели­чины скорости v: