Выбрать главу

a=dv/dt. (11.15)

Другую, поперечную составляющую ускорения легко вычис­лить, взглянув на фиг. 11.7 и 11.8. За короткое время Dt изме­нение угла между v1 и v2 равно малому углу Dq. Если величина скорости равна v, то

Dv=vDq, а ускорение а равно

а=v(dq/dt).

Теперь нам нужно знать Dq/Dt. Эту величину можно найти так: если в данный момент кривую можно приблизительно заменить окружностью радиусом R, то, поскольку за время Dt частица пройдет расстояние s=vDt, изменение угла равно

Dq=v(Dt/R) или Dq/Dt=v/R.

Таким образом, как мы уже установили ранее,

a=v2/R. (11.16)

§ 7. Скалярное произведение векторов

Давайте еще немного займемся свойствами векторов. Легко понять, что длина шага в пространстве одинакова во всех ко­ординатных системах. Следовательно, если какому-то шагу r соответствуют составляющие х, у, z в одной системе координат и составляющие х', у', z' в другой системе, то расстояние r= |r| одно и то же в обеих системах. Сначала мы, конечно, долж­ны ввести два расстояния

а затем проверить, что эти обе величины равны. Чтобы не во­зиться с квадратным корнем, будем сравнивать квадраты рас­стояний. Мы должны, таким образом, показать, что

x22+ z2=x'2+у'2+ г'2. (11.17)

Подставив в это уравнение определяемые соотношением (11.5) значения ж', у', z', мы увидим, что это действительно так. Зна­чит, кроме уже изученных нами векторных уравнений, суще­ствуют еще какие-то соотношения, верные в любой системе ко­ординат.

Незаметно мы получили новый тип величин. Мы можем по­строить функцию х, у и z, называемую скалярной функцией,— величину, которая не имеет направления, и одинакова в обеих системах координат. Из вектора можно построить скаляр. Хорошо бы найти общее правило для этого построения. Соб­ственно говоря, мы уже нашли это правило: надо возвести в квадрат каждую из составляющих вектора и сложить их. Опре­делим теперь новую величину, которую обозначим а·а. Это не вектор, а скаляр; это число, одинаковое во всех координатных системах и определяемое как сумма квадратов трех составляю­щих вектора:

a·a=a2x+ a2y+a2z. (11.18)

Вы спросите: «В какой системе координат?» Но раз это число не зависит от системы координат, то ответ одинаков в любой системе координат. Мы имеем дело с новым видом величины, с инвариантом, или скаляром, полученным «возведением вектора в квадрат». Если теперь определить, исходя из векторов а и b, величину

a·b=axbx+ayby+ azbz, (11.19)

то можно убедиться, что эта величина совпадает в штрихованной и нештрихованной системах координат. Чтобы доказать это, заметим, что это верно для величин а·а, b·b и с·с, где с=а+b. Сумма квадратов (ax+bx)2+(ay+by)2+(az+bz)2 —ин­вариант:

x+bx)2+(аy+by)2+(аz+bг)2 = (аx'+bx')2 + (ay'+bу')2+(az,+bz')2. (11.20) Раскроем скобки в обеих сторонах этого уравнения. Перекрест­ные произведения дадут нам выражения типа (11.19), а суммы квадратов составляющих а и b — выражения (11.18). Инва­риантность слагаемых типа (11.18) приводит к инвариантности перекрестных произведений типа (11.19).