Выбрать главу

2.3025. (Позднее мы увидим, что правильнее было бы взять

2.3026. но давайте возьмем то, что у нас получилось.) Пользуясь этой таблицей, можно возвести 10 в любую степень, если ее показатель каким угодно способом выражается через 1/1024. Теперь легко составить таблицу логарифмов, потому что все необходимое для этого мы уже припасли. Процедура этого изо­бражена в табл. 22.2, а нужные числа берутся из второго и третьего столбцов табл. 22.1.

Таблица 22.2 · ВЫЧИСЛЕНИЯ log102

Предположим, что мы хотим знать логарифм 2. Это значит, что мы хотим знать, в какую степень надо возвести 10, чтобы получить 2. Может быть, возвести 10 в степень 1/2? Нет, полу­чится слишком большое число. Глядя на табл. 22.1, можно ска­зать, что нужное нам число лежит между 1/4 и 1/2. Поиск его начнем с 1/4; разделим 2 на 1,788..., получится 1,124...; при де­лении мы отняли от логарифма двух 0,250000, и теперь нас интересует логарифм 1,124.... Отыскав его, мы прибавим к результату 1/4=256/1024. Найдем в табл. 22.1 число, которое бы при движении по третьему столбцу сверху вниз стояло сразу за 1,124... . Это 1,074607. Отношение 1,124... к 1,074607 равно 1,046598. В конце концов мы представим 2 в виде произведения чисел из табл. 22.1:

2=(1,77828)·(1,074607)·(1,036633) · (1,0090350)·(1,000573).

Для последнего множителя (1,000573) в нашей таблице места не нашлось; чтобы найти его логарифм, надо представить это число в виде 10D/1024»1+2,3025D/1024. Отсюда легко найти, что D=0,254. Таким образом, наше произведение мож­но представить в виде десятки, возведенной в степень 1/1024 (256+32+16+4+0,254). Складывая и деля, мы полу­чаем нужный логарифм: log102=0,30103; этот результат верен до пятого десятичного знака!

Мы вычисляли логарифмы точно так же, как это делал мистер Бриггс из Галифакса в 1620 г. Закончив работу, он сказал: «Я вычислил последовательно 54 квадратных корня из 10». На самом деле он вычислил только 27 первых корней, а потом сделал фокус с D. Вычислить 27 раз квадратный корень из 10, вообще-то говоря, немного сложнее, чем 10 раз, как это сделали мы. Однако мистер Бриггс сделал гораздо большее: он вычислял корни с точностью до шестнадцатого десятичного знака, а когда опубликовал свои таблицы, то оставил в них лишь 14 десятичных знаков, чтобы округлить ошибки. Соста­вить таблицы логарифмов с точностью до четырнадцатого деся­тичного знака таким методом — дело очень трудное. Зато це­лых 300 лет спустя составители таблиц логарифмов занимались тем, что уменьшали таблицы мистера Бриггса, выкидывая из них каждый раз разное число десятичных знаков. Только в последнее время при помощи электронных вычислительных ма­шин оказалось возможным составить таблицы логарифмов не­зависимо от мистера Бриггса. При этом использовался более эффективный метод вычислений, основанный на разложении логарифма в ряд.

Составляя таблицы, мы натолкнулись на интересный факт: если показатель степени e очень мал, то очень легко вычислить 10e; это просто 1+2,3025е. Это значит, что 10n/2,3025 =1+n для очень малых n. Кроме того, мы говорили с самого начала, что вычисляем логарифмы по основанию 10 только потому, что у нас на руках 10 пальцев и по десяткам нам считать удобнее. Логарифмы по любому другому основанию получаются из ло­гарифмов по основанию 10 простым умножением. Теперь на­стало время выяснить, не существует ли математически выде­ленного основания логарифмов, выделенного по причинам, не имеющим ничего общего с числом пальцев на руке. В этой есте­ственной шкале формулы с логарифмами должны выглядеть проще. Составим новую таблицу логарифмов, умножив все логарифмы по основанию 10 на 2,3025.... Это соответствует пере­ходу к новому основанию — натуральному, или основанию е. Заметим, что loge (l+n)»n или еn»1+n, когда n®0.