Выбрать главу

Фиг. 23.10. Кривая поглощения g-излучения, полученная Р. Мёссбауэром.

Построив такую кривую, экспериментатор измерил Q самого добротного из ныне известных осцилляторов. Это проделал Р. Мёссбауэр, получивший за свои работы Нобелевскую пре­мию. На горизонтальной шкале отложена скорость, потому что для сдвига частоты использовался эффект Допплера, получаю­щийся в результате относительного движения источника и по­глотителя. Цифры дают некоторое представление о тонкости эксперимента — пришлось измерять скорости в несколько сан­тиметров в секунду! Если продолжить горизонтальную шкалу влево, то нулевую частоту мы найдем на расстоянии 1010 см! Страницы для этого, пожалуй, не хватит!

Наконец, возьмем какой-нибудь выпуск журнала Physical Review, скажем, за 1 января 1962 г. Найдется ли в нем резонансная кривая? Резонансные кривые имеются непременно в каждом выпуске этого жур­нала, и на фиг. 23.11 изоб­ражена одна из таких кри­вых.

Фиг. 23.11. Зависимость эф­фективных сечений реакций от величины момента количества дви­жения.

Нижняя кривая описывает нерезонанс­ный фон; верхняя кривая показывает, что на зтот фон наложено резонансное сечение.

Это очень интересная кривая. Она соответствует ре­зонансу в реакциях со стран­ными частицами (K--мезоны и протоны). Резонанс был об­наружен при измерении ко­личества частиц разных сор­тов, получающихся в резуль­тате реакции. Разным про­дуктам реакции соответствуют разные кривые, но в каждой из них при одной и той же энергии есть пики примерно одинаковых очертаний. Зна­чит, при определенной энергии K--мезона существует резо­нанс. При столкновении К--мезонов и протонов, наверное, создаются благоприятные для резонанса условия, а может быть, даже новая частица. Сегодня мы еще не можем сказать, что такое эти выбросы в кривых — «частица» или просто ре­зонанс. Очень узкий резонанс соответствует очень точно от­меренному количеству энергии; это бывает тогда, когда мы имеем дело с частицей. Когда резонансная кривая уширяется, то становится трудно сказать, с чем мы имеем дело — с части­цей, которая живет очень мало, или просто с резонансом в реак­ции. В гл. 2 мы отнесли эти резонансы к частицам, но когда писалась та глава, об этом резонансе еще не было известно, по­этому нашу таблицу элементарных частиц можно дополнить!

Глава 24

ПЕРЕХОДНЫЕ РЕШЕНИЯ

§ 1. Энергия осциллятора

§ 2. Затухающие колебания

§ 3. Переходные колебания в электрических цепях

§ 1. Энергия осциллятора

Хотя глава названа «Переходные решения», речь здесь все еще в основном идет об осцил­ляторе, на который действует внешняя сила. Мы еще ничего не говорили об энергии колеба­ний. Давайте займемся ею.

Чему равна кинетическая энергия осцил­лятора? Она пропорциональна квадрату скоро­сти. Здесь мы затронули важный вопрос. Пред­положим, что мы изучаем свойства некоторой величины А; это может быть скорость или еще что-нибудь. Мы обратились к помощи ком­плексных чисел: A==Вехр(iwt), но в физике праведна и чтима только действительная часть комплексного числа. Поэтому если вам для чего-нибудь понадобится получить квадрат А, то не возводите в квадрат комплексное число, чтобы потом выделить его действительную часть.

Действительная часть квадрата комплексно­го числа не равна квадрату действительной ча­сти, она содержит еще и мнимую часть первона­чального числа. Таким образом, если мы захо­тим найти энергию и посмотреть на ее превра­щения, нам придется на время забыть о комп­лексных числах.

Итак, истинно физическая величина А — это действительная часть A0exp[i(wt+D)], т. е.

A=A0соs(wt+D), а комплексное число А — это j4oexp(iD). Квадрат этой физической величины равен A20cos2(wt+D). Он изменяется от нуля до максимума, как это предписывается квадра­том косинуса. Максимальное значение квадрата косинуса равно 1, минимальное равно 0, а его среднее значение — это 1/2.

Зачастую нас совсем не интересует энергия в каждый дан­ный момент колебания; во многих случаях достаточно знать лишь среднюю величину A2 (среднее значение квадрата А в те­чение времени, много большего, чем период колебаний). При этих условиях можно усреднить квадрат косинуса и доказать теорему: если А представляется комплексным числом, то сред­нее значение А2 равно 1/2A20. Здесь А20это квадрат модуля комплексного числа А. (Квадрат модуля В записывают по-раз­ному;