Выбрать главу

Система так система. Натолкнувшись на неразрешимую за­дачу, надо расширить царство чисел. На этот раз нам трудно делить: нельзя найти целого числа ни положительного, ни от­рицательного, которое появилось бы в результате деления 3 на 5. Так назовем это и другие подобные ему числа рациональ­ными дробями и предположим, что дроби подчиняются тем же правилам, что и целые числа. Тогда мы сможем оперировать дробями так же хорошо, как и целыми числами.

Еще один пример на степень: что такое а3/5? Мы знаем толь­ко, что (3/5) 5=3, ибо это определение числа 3/5, и еще, что (а3/5)5 =a(3/5)5, ибо это одно из правил. Вспомнив определение

корня, мы получим а(3/5)= . Определяя таким образом дро­би, мы не вводим никакого произвола. Сами правила следят за тем, чтобы подстановка дробей вместо написанных нами сим­волов не была бессмысленной процедурой. Замечательно, что эти правила справляются с дробями так же хорошо, как и с целыми числами (положительными и отрицательными)!

Пойдем дальше по пути обобщения. Существуют ли еще урав­нения, которых мы не научились решать? Конечно. Например, нам не под силу уравнение b=21/2=Ц2. Невозможно найти рациональную дробь, квадрат которой равен 2. В наше время это выяснить довольно просто. Мы знаем десятичную систему и не пугаемся бесконечной десятичной дроби, которую можно использовать для приближения корня из двух. Хотя идея та­кого приближения появилась еще у древних греков, однако усваивалась она с большим трудом. Чтобы точно сформули­ровать суть такого приближения, надо постичь такие высокие материи, как непрерывность и соотношения порядка, а это очень трудный шаг. Это сделал Дедекинд очень точно и очень формально. Однако, если не заботиться о математической стро­гости, легко понять, что числа типа Ц2 можно представить в виде целой последовательности десятичных дробей (потому что если остановиться на какой-нибудь десятичной дроби, то получится рациональное число), которая все ближе и ближе подходит к желанному результату. Этих знаний нам вполне до­статочно; они позволят свободно обращаться с иррациональ­ными числами и вычислять числа типа Ц2 с нужной точностью.

§ 4. Приближенное вычисление иррациональных чисел

Теперь такой вопрос: как возвести число в иррациональную степень? Например, нам хочется узнать, что такое 10Ц2 . Ответ в принципе очень прост. Возьмем вместо Ц2 его прибли­жение в виде конечной десятичной дроби — это рациональное число. Возводить в рациональную степень мы умеем; дело сво­дится к возведению в целую степень и извлечению корня. Мы получим приближенное значение числа 10Ц2 . Можно взять десятичную дробь подлиннее (это снова рациональное число). Тогда придется извлечь корень большей степени; ведь знамена­тель рациональной дроби увеличится, но зато мы получим бо­лее точное приближение. Конечно, если взять приближенное значение Ц2 в виде очень длинной дроби, то возведение в сте­пень будет делом очень трудным. Как справиться с этой задачей?

Вычисление квадратных корней, кубичных корней и других корней невысокой степени — вполне доступный нам арифмети­ческий процесс; вычисляя, мы последовательно, один за дру­гим, пишем знаки десятичной дроби. Но для того, чтобы воз­вести в иррациональную степень или взять логарифм (решить обратную задачу), нужен такой труд, что применить прежнюю процедуру уже не просто. На помощь приходят таблицы. Их называют таблицами логарифмов или таблицами степеней, смотря по тому, для чего они предназначены. Они экономят время: чтобы возвести число в иррациональную степень, мы не вычисляем, а только перелистываем страницы.

Хотя вычисление собранных в таблицы значений — проце­дура чисто техническая, а все же дело это интересное и имеет большую историю. Поэтому посмотрим, как это делается. Мы

вычислим не только x=10 V2 , но решим и другую задачу: 10x=2, или x=log102. При решении этих задач мы не откроем новых чисел; это просто вычислительные задачи. Решением будут иррациональные числа, бесконечные десятичные дроби, а их как-то неудобно объявлять новым видом чисел.