Выбрать главу

Недавно удалось создать источники света, в которых атомы излучают одновременно, и поэтому можно обойти эффект усред­нения. Принцип устройства подобных источников весьма сло­жен, его можно понять, только зная законы квантовой меха­ники. Называются эти источники лазерами. Частота интерфе­ренции испущенного лазером света, т. е. время, в течение кото­рого фаза остается постоянной, много больше 10-8 сек. Оно может быть равно сотой, десятой доле секунды и даже целой секунде; с помощью обычных световых ячеек можно определить частоту интерференции между двумя лазерами. Легко также заметить биения при сложении света от двух лазеров. Вне вся­кого сомнения, скоро станет возможно получать столь медлен­ные биения, что, направив на стенку свет от двух лазеров, можно будет увидеть их невооруженным глазом в виде периодических ослаблений и увеличений яркости пятна!

Еще один пример погашения интерференции представляет собой сложение света не двух, а многих источников. В этом слу­чае A2R равно квадрату суммы большого числа амплитуд (комп­лексных чисел), т. е. сумме квадратов плюс перекрестные члены от каждой пары. При определенных условиях перекрестные члены могут погаситься и интерференция исчезнет. Например, когда источники распределены в пространстве случайным обра­зом, тогда разность фаз A2и А3хотя и постоянна, но значитель­но отличается от разности фаз A1 и А2и т. д. В результате полу­чается много косинусов — одни из них положительны, другие отрицательны, а в сумме они почти целиком сокращаются.

Вот почему во многих случаях мы не замечаем эффекта интер­ференции, а полная интенсивность оказывается равной сумме интенсивностей всех источников.

§ 5. Рассеяние света

Приведенные выше примеры помогут нам понять одно явле­ние, которое возникает в воздухе в результате неупорядочен­ного расположения атомов. В главе о показателе преломления мы говорили, что падающий свет вызывает излучение атомов. Электрическое поле падающего пучка раскачивает электроны вверх и вниз, и они, двигаясь с ускорением, начинают излу­чать. Это рассеянное излучение образует пучок света, движу­щийся в том же направлении, что и падающий луч, но отличаю­щийся от него по фазе, благодаря чему и возникает показатель преломления.

Но что можно сказать об интенсивности рассеянного света в других направлениях? Если атомы очень правильно череду­ются, образуя красивый геометрический узор, интенсивность во всех остальных направлениях равна нулю, потому что ре­зультат сложения множества векторов с меняющимися фазами сводится к нулю. Но если расположение атомов беспорядочное, интенсивность в любом направлении, как мы уже говорили, равна сумме интенсивностей от каждого атома в отдельности. Более того, атомы газа постоянно движутся, и разность фаз двух атомов, принимающая определенное значение в некото­рый момент времени, в следующий момент уже изменится, поэтому при усреднении по времени исчезает каждый пере­крестный член в отдельности. Следовательно, для определе­ния интенсивности света, рассеянного газом, можно взять рассеяние на одном атоме и умножить интенсивность на чи­сло атомов.

Как уже отмечалось, голубой цвет неба объясняется именно рассеянием света в воздухе. Солнечный свет проходит сквозь воздух, и, когда мы смотрим в сторону от Солнца, например, пер­пендикулярно падающему лучу, мы видим свет голубой окрас­ки; попробуем теперь подсчитать интенсивность рассеянного света и понять, почему он голубой.

Падающий луч света с напряженностью электрического поля Е = Е0еivt в точке расположения атома, как известно, застав­ляет электрон колебаться вверх и вниз (фиг. 32.2). С помощью уравнения (23.8) находим амплитуду колебаний

(32.15)

В принципе можно учесть затухание и ввести сумму по часто­там, считая, что атом действует как совокупность осцилляторов с разными частотами. Однако для простоты ограничимся слу­чаем одного осциллятора и пренебрежем затуханием. Тогда выражение для амплитуды принимает вид, которым мы уже пользовались при вычислении показателя преломления:

(32.16)

Из этой формулы для и равенства (32.2) легко получить интен­сивность рассеяния в заданном направлении.

Однако, чтобы сэкономить время, вычислим сначала полную интенсивность рассеяния во всех направлениях. Полную энер­гию, рассеиваемую атомом за 1 сек во всех направлениях, можно получить из формулы (32.7). После перегруппировки членов выражение для энергии принимает вид

(32.17)

Фиг. 32.2. Луч, падающий на атом, заставляет заряды (элект­роны) атома колебаться. Движущиеся электроны в свою очередь излучают во все стороны.

Мы приводим результат в такой форме потому, что она удобна для запоминания: прежде всего, рассеиваемая энергия пропорциональна квадрату падающего поля. Что это означает? Очевидно, квадрат поля пропорционален энергии падающего пучка, проходящей за 1 сек. (В самом деле, энергия, падающая на 1 м2 за 1 сек, равна произведению e0с и среднего квадрата электрического поля <E2>; если максимальное значение Е есть Е0 то <E2> = 1/2E02.) Другими словами, рассеиваемая энергия пропорциональна плотности падающей энергии; чем сильнее солнечный свет, тем ярче кажется небо.

А какая доля падающего света рассеивается электроном? Вообразим мишень с площадью а, помещенную на пути луча (не настоящую мишень, сделанную из какого-то вещества, пото­му что она приведет к дифракции света и т. п., а воображаемую мишень, нарисованную в пространстве). Количество энергии, проходящее через поверхность 0, пропорционально падающей интенсивности и площади мишени:

(32.18)

А теперь давайте условимся: полное количество энергии, рассеиваемое атомом, мы приравняем энергии падающего пучка, проходящей через некоторую площадь; указав величину площа­ди, мы тем самым определяем рассеиваемую энергию. В такой форме ответ не зависит от интенсивности падающего пучка; он выражает отношение рассеиваемой энергии к энергии, падающей на 1 м2. Другими словами,

Смысл этой площади заключается в том, что, если бы вся попа­дающая на нее энергия отбрасывалась в сторону, она рассеи­вала бы столько энергии, сколько рассеивает атом.