Выбрать главу

(27.6)

Такая форма более удобна, чем (27.3), потому что проще изме­рить f, чем кривизну и показатель преломления линзы. Если нам не нужно самим конструировать линзу или изучать в под­робностях весь процесс, а достаточно достать линзу с полки, то нас будет интересовать только величина f, а не n или R! Любопытная ситуация возникает, когда s становится мень­ше f. Что же тогда происходит? При s<f обратная величина (Us) больше (1/f) и поэтому s' отрицательна. Наша формула ут­верждает, что свет фокусируется только при отрицательном зна­чении s',— понимайте как хотите! Но означает это нечто весьма определенное и интересное. Формула эта остается полезной и для отрицательных значений. Что она означает, ясно из фиг. 27.3. Исходящие из точки О лучи преломляются на поверх­ности, но в фокус не собираются, так как точка О расположена слишком близко к поверхности, и лучи становятся «более чем параллельны». Однако они начинают расходиться так, как буд­то бы вышли из точки О' вне линзы. Эта точка есть кажущееся изображение, или, как иногда говорят, мнимое изображение.

Фиг. 27.3. Мнимое изображение.

Фиг. 27.4. Плоская поверхность раздела отображает точку О' в точку О.

Изображение О' на фиг. 27.2 называется действительным изоб­ражением. Действительное изображение возникает, когда свет действительно проходит через точку. Но если кажется, что свет исходит из некоторой фиктивной точки, не совпадаю­щей с действительным источником, то эта точка и есть мнимое изображение. Следовательно, для отрицательных s' точка О' находится по другую сторону поверхности, и все встает на свои места.

Рассмотрим теперь интересный случай, когда R=Ґ; при этих условиях (1/s)+(n/s')=0. Иными словами, s' =-ns, что означает, что если из плотной среды смотреть на некую точку в разреженной среде, то она будет казаться дальше в n раз. Мы можем прочитать наше уравнение и наоборот: при взгляде на объект, находящийся в плотной среде за плоской поверхностью раздела, нам будет казаться, что он расположен к нам ближе, чем на самом деле (фиг. 27.4). Когда мы смотрим сверху на дно плавательного бассейна, он кажется нам мельче в 3/4 раза, чем он есть на самом деле; эта цифра есть обратная величина показа­теля преломления воды.

Теперь мы могли бы перейти к сферическому зеркалу. Но если вникнуть в смысл сказанного нами ранее, то вполне можно разобрать этот вопрос самостоятельно. Поэтому пусть читатель сам выведет формулы для сферического зеркала, но для этого полезно принять следующие условия:

1) расстояние до объекта s положительно, если точка О расположена слева от поверхности;

2) расстояние до изображения s' положительно, если точка О' расположена справа от поверхности;

3) радиус кривизны поверхности положителен, если центр находится справа от поверхности.

Например, на фиг. 27.2 s, s' и R положительны; на фиг. 27.3 s и R положительны, a s' отрицательна. Для вогнутой поверх­ности наша формула (27.3) остается справедливой, если считать R отрицательной величиной.

Пользуясь приведенными условиями, можно вывести соответ­ствующую формулу и для зеркала, положив в (27.3) n=-1 (как если бы среда за зеркалом имела показатель преломления -1), и тогда получится правильный результат!

Мы вывели формулу (27.3) простым и элегантным способом, исходя из принципа наименьшего времени; ту же формулу мож­но, конечно, получить с помощью закона Снелла, если учесть, что углы малы и заменить синусы самими углами.

§ 3. Фокусное расстояние линзы

Рассмотрим теперь другой случай, имеющий большое прак­тическое значение. Большинство линз, которыми мы пользуемся, имеет не одну, а две поверхности раздела. К чему это приводит? Пусть имеется стеклянная линза, ограниченная поверхностями с разной кривизной (фиг. 27.5). Рассмотрим задачу о фокусироваиии пучка света из точки О в точку О'. Как это сделать? Сначала используем формулу (27.3) для первой поверхности, забыв о второй поверхности. Это позволит нам установить, что испускаемый в точке О свет будет казаться сходящимся или расходящим­ся (в зависимости от знака фокусного расстояния) из некоторой другой точки, скажем О'. Решим теперь вторую часть задачи. Имеется другая поверхность между стеклом и воздухом, и лучи подходят к ней, сходясь к точке О'. Где они сойдутся на самом деле? Снова воспользуемся той же формулой! Находим, что они сойдутся к точке О". Таким образом можно пройти, если необ­ходимо, через 75 поверхностей, последовательно применяя одну и ту же формулу и переходя от одной поверхности к другой!