Выбрать главу

Но предположим, что мы столкнулись с более сложной молекулой, которая может вращаться и колебаться, и пред­положим (в классической механике это так), что энергии внут­ренних движений также пропорциональны kT. Поэтому при заданной температуре молекула, кроме кинетической энергии kT, имеет внутреннюю энергию колебания и вращения. Тогда полная энергия U включает не только кинетическую энергию, но и вра­щательную энергию и мы получаем другие значения у. Наилуч­ший способ измерения gэто измерение удельной теплоемкости, характеризующей изменение энергии при изменении темпера­туры. К этому способу мы еще вернемся, а пока предполо­жим, что нам удалось экспериментально определить g с по­мощью кривой PVg , соответствующей адиабатическому сжатию.

Попробуем вычислить g для ряда частных случаев. Прежде всего для одноатомных газов полная энергия U есть не что иное, как кинетическая энергия, и в этом случае, как мы уже знаем, g равно 5/3. В качестве примера двухатомных газов рассмотрим кислород, водород, пары иода и т. д. и предположим, что двух­атомный газ можно представить как собрание пар атомов, меж­ду которыми действуют силы, похожие на те, что изображены на фиг. 40.3. Можно также предположить, и оказывается, что это вполне законно, что при температурах; обычных для диатомных газов, пары атомов стремятся удалиться друг от друга на расстояние r0 (расстояние минимума потенциальной энергии). Если бы это было не так, и вероятность не очень сильно за­висела от удаления от равновесной конфигурации, то мы обна­ружили бы, что кислород есть смесь сравнимых количеств O2 и одиночных атомов кислорода. А мы знаем, что в кислороде при­сутствует очень мало одиночных атомов кислорода, а это озна­чает, что глубина потенциальной ямы значительно больше kT, и это как раз мы и предполагали. Но раз атомы, составляющие молекулу, прочно закреплены на расстоянии r0, то нам понадо­бится лишь часть потенциальной кривой вблизи минимума, которую в этом случае можно приближенно заменить параболой. Параболический потенциал соответствует гармоническому ос­циллятору, и, в самом деле, отличной моделью молекулы кисло­рода могут служить два соединенных пружинкой атома.

Но чему же равна полная энергия молекулы при температу­ре Т? Мы знаем, что кинетическая энергия каждого из атомов равна 3/2 kT, так что кинетическая энергия обоих атомов равна 3/2kT +3/2kT. Можно распределить эту энергию иначе: тогда те же самые 3/2 плюс 3/2 будут выглядеть как кинетическая энергия центра масс (3/2), кинетическая энергия вращения (2/2) и кинетическая энергия колебаний (1/2). Известно, что на долю кинетической энергии колебаний приходится 1/2, потому что это одномерное движение, а каждой степени свободы соответствует l/2kT. Обращаясь к вращениям, мы можем вы­делить две оси вращения, что соответствует двум независимым движениям. Мы представляем себе атомы в виде точек, которые не могут вращаться вокруг соединяющей их линии. Но на всякий случай запомним о таком предположении, потому что если мы упремся где-то в тупик, то, может быть, здесь обна­ружится корень зла. Нас должен интересовать еще и другой вопрос: чему равна потенциальная энергия колебаний, вели­ка ли она? Средняя потенциальная энергия гармонического осциллятора равна средней кинетической энергии, т.е. также l/2kT. Полная энергия молекулы U = 7/2kT, или kT=2/7U на атом. Это означает, что g равно 9/7, а не 5/3, т. е. g=1,286. Можно сравнить эти числа с действительно измеренными значениями g, приведенными в табл. 40.1. Взгляните сначала на гелий; это одноатомный газ, и значение g очень близко к 5/3; отклонение от этого значения, вероятно, есть просто след­ствие экспериментальных неточностей, хотя при столь низких температурах между атомами могут появиться силы взаимодей­ствия. Криптон и аргон — еще два одноатомных газа — также дают согласующиеся значения в пределах ошибки эксперимента.