Выбрать главу

В прочитанной десять лет спустя лекции он сказал: «Я дол­жен изложить Вам то, что я считаю наибольшей трудностью, стоящей перед молекулярной теорией». Это было первое ука­зание на ложность законов классической физики, первое предчувствие того, что существует нечто, необъясненное с са­мого начала, ибо опыту противоречила строго доказанная теорема.

Примерно в 1890 г. Джинс заговорил вновь об этой загадке. Часто приходится слышать, что физики конца девятнадцатого столетия были уверены в том, что им известны все существен­ные законы природы и дело стоит лишь за тем, чтобы получить нужные числа с максимальным числом десятичных знаков. Кто-то это сказал, а остальные повторяют. Но если покопаться в физических журналах тех лет, то станет ясно, что почти каж­дый из них в чем-нибудь да сомневался. Джинс говорил об этой проблеме как о загадочном явлении, из которого как будто бы следует, что по мере падения температуры некоторые виды движения «замерзают».

Если бы мы могли предположить, что колебаний при низ­ких температурах нет и возникают они только при высоких темпе­ратурах, то можно было бы представить существование такого газа, у которого при очень низкой температуре колебательного движения нет совсем, так что g=1,40, а при высоких темпера­турах возникают колебания и, следовательно, g убывает. То же самое можно предположить и о вращениях. Если бы можно было избавиться от вращений, скажем, «заморозить» их, по­низив достаточно температуру, то стало бы понятно, почему при низких температурах для водорода g приближается к 1,66. Но как же понять все это? Конечно, оставаясь в рамках классической механики, «замерзающих» движений нельзя объяснить. Все стало на свои места лишь после открытия квантовой меха­ники.

Мы сформулируем без доказательства основные результаты статистической механики, построенной на основе квантовой механики. Напомним, что, согласно квантовой механике, свя­занная потенциалом система, например осциллятор, имеет дискретный набор уровней энергии, т. е. состояний с различ­ной энергией. Возникает вопрос: как модифицировать стати­стическую механику, чтобы привести ее в согласие с квантовой механикой? Обратите внимание на интересную деталь: хотя большинство задач квантовой механики сложнее соответствую­щих задач классической физики, проблемы статистической ме­ханики решаются с помощью квантовой теории много проще!

Простенький результат классической механики, что n= n0ехр(-энергия/kT), становится в квантовой теории весьма важной теоремой: если набор молекулярных состояний характе­ризуется энергиями Е0, Е1, e2, ..., Еi, ..., то в случае теплового равновесия вероятность найти молекулу в состоянии с энергией Еi пропорциональна ехр(-Ei/kT). Так определяется вероят­ность пребывания в различных состояниях. Иначе говоря, относительный шанс — вероятность нахождения в состоянии Е1 по сравнению с вероятностью нахождения в состоянии Е0 равен

это, конечно, то же самое, что и

потому что Р1=n1/N, а Р0=n0/N. Таким образом, состояния с большей энергией менее вероятны, чем состояние с меньшей энергией. Отношение числа атомов в верхнем состоянии к числу атомов в нижнем состоянии равно е в степени (разность энергий, деленная на kT, с обратным знаком) — очень простая тео­рема.

Обратим внимание на то, что уровни энергии гармоническо­го осциллятора отстоят друг от друга на равных расстояниях. Припишем низшему уровню энергию Е0=0 (на самом деле эта энергия немного отличается от нуля, но сдвиг всех уровней на одну и ту же величину не имеет значения), тогда энергия следующего уровня E1=hw, затем следует 2hw, 3hw) и т. д.