Выбрать главу

В нашем случае сосуд — это прямоугольный ящик, длина которого b, а площадь поперечного сечения А (см. фиг. 43.2). Если к пластинам приложена разность потенциалов V, то элек­трическое поле Е между пластинами равно V/b. (Электрический потенциал — это работа, совершаемая при переносе единичного заряда от одной пластины к другой. Сила, действующая на единичный заряд, равна Е. Если значение Е одинаково всюду между пластинами, что можно с достаточным основанием пред­положить в нашем случае, то затраченная на единичный заряд работа равна Eb, т. е. V=Eb.) В нашем случае на ионы дей­ствует сила qЕ, где q заряд иона. Скорость дрейфа иона равна произведению силы на m:

vдр=mF=mq=mqV/b. (43.16)

Электрический ток I равен потоку заряда за 1 сек. Электри­ческий ток через одну из пластин равен, таким образом, полному заряду ионов, достигающих пластины за 1 сек. Если ионы дви­жутся к пластине со скоростью vдр, то за время Т пластины достигнут те ионы, которые находились не дальше, чем на расстоянии vдрT от нее. Если в единичном объеме содержится ni. ионов, то за время Т на пластине высадится niAvдрT ионов.

Каждый ион несет заряд q, поэтому

Собранный за время Т заряд=qniAvдрT. (43.17)

Ток / — это отношение собранного за время Т заряда к вре­мени Т:

I=qniAvдр. (43.18)

Подставляя сюда скорость дрейфа vдр из (43.16), получаем

I=mq2ni(A/B)V. (43.19)

Мы выяснили, что ток пропорционален разности потенциалов, это и есть закон Ома, а сопротивление R равно обратной по­стоянной пропорциональности:

1/R=mq2ni(A/B). (43.20)

Мы нашли связь сопротивления со свойствами молекул niq и m, которое в свою очередь зависит от t и m. Если мы при помощи атомных измерений определим ni и q, то, измеряя R, можно определить m, а потом и t.

§ 5. Молекулярная диффузия

Перейдем к другой задаче, для которой нам придется не­сколько изменить метод анализа, — к задаче о диффузии. Пред­положим, что мы взяли ящик, заполненный газом, находящимся в тепловом равновесии, а потом в любое место внутри ящика вспрыснули небольшое количество другого газа. Назовем первоначальный газ газом «фона», а новый газ — «особым» газом. Особый газ начинает распространяться по всему ящику, но распространение это замедляется наличием молекул фона. Явление такого замедленного распространения называется диффузией. Диффузия в основном определяется столкновениями молекул особого газа с молекулами фона. После многих столк­новений особые молекулы более или менее равномерно распре­делятся по всему ящику. Важно не спутать диффузию газа с переносом больших количеств вещества в результате кон­векционных токов. Обычно смешение двух газов происходит именно в результате комбинации конвекции и диффузии. Сейчас нас интересует только такое перемешивание, которое не сопро­вождается «порывами ветра». Газ распространяется только благодаря молекулярному движению, т. е. происходит диф­фузия. Давайте выясним, быстро ли происходит диффузия.

Итак, мы приступаем к вычислению общего потока молекул особого газа, порождаемого молекулярным движением. Общий поток не равен нулю только тогда, когда распределение молекул отличается от равновесного, иначе усреднение молекулярного движения сводит общий поток к нулю. Рассмотрим сначала поток в направлении оси х. Чтобы определить, чему этот поток равен, мы должны вообразить площадку, перпендикулярную к оси, и подсчитать число молекул, пересекающих эту площадку. Чтобы определить общий поток, мы должны считать положи­тельными те молекулы, которые движутся в направлении положительных x, и вычесть из этого числа те молекулы, которые движутся в противоположном направлении. Как мы неоднократно убеждались, число молекул, пересекающих пло­щадку в течение времени DT, равно числу молекул, находя­щихся к началу интервала DT внутри объема, заключенного между нашей площадкой и площадкой, расположенной от нее на расстоянии vDT. (Заметим, что здесь v настоящая скорость молекулы, а отнюдь не скорость дрейфа.)