Выбрать главу

Мы упростим наши выкладки, если возьмем площадку еди­ничной площади. Тогда число особых молекул, пересекающих площадку слева направо (справа от площадки лежат положи­тельные x-направления), равно n_vDT, где n_ — число особых молекул в единичном объеме слева от площадки (с точностью до множителя ~1/6, но мы такими множителями пренебрежем!). Аналогично, число особых молекул, движущихся справа налево, равно n+vDT, где n+плотность особых молекул справа от площадки. Если мы обозначим молекулярный поток буквой J, под которой мы будем понимать общий поток молекул через единичную площадку за единицу времени, то получим

или

J=(n--n+)v. (43.22)

А что понимать под n- и n+? Когда мы говорим «плотность слева от площадки», то как далеко налево? Мы должны изме­рить плотность в том месте, откуда молекула отправляется в свой «свободный полет», потому что число стартующих молекул определяется числом молекул, находящихся в этом месте. Таким образом, n- — это плотность молекул на расстоянии длины свободного пробега l слева от нашей воображаемой площадки, а n+ — плотность молекул на расстоянии длины свободного пробега справа от нее.

Распределение особых молекул в ящике удобно описывать с помощью непрерывной функции х, у и z, которую мы обозна­чим na. Под na(х, у, z) нужно понимать плотность особых молекул в маленьком объеме вокруг точки (х, у, z). Тогда

разность (n+-n-) можно представить в виде

(n+-n-)=(dna/dx)Dx=(dna/dx) ·2l (43.23)

Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем

Jx=lv(dna/dx) (43.24)

Мы выяснили, что поток особых молекул пропорционален про­изводной плотности, или, как иногда говорят, «градиенту плотности».

Ясно, что мы сделали несколько грубых приближений. Не говоря уже о том, что мы постоянно забывали о множителях, мы использовали v, когда нужно было ставить vx, а разместив объемы, содержащие молекулы n+ и n-, на концах перпенди­куляров к площадке, взяли перпендикуляры длиной l. Между тем для тех молекул, которые движутся не перпендикулярно к поверхности, l соответствует длине наклонного пути. Можно исправить эти недоделки; более тщательный анализ показал бы, что правую часть уравнения (43.24) нужно умножить на 1/3. Итак, более правильный ответ выглядит следующим образом:

Аналогичные уравнения можно написать для токов вдоль y- и z-направлений.

С помощью макроскопических наблюдений можно измерить ток Jх и градиент плотности dna/dx. Их отношение, найденное экспериментально, называется «коэффициентом диффузии» D, Это значит, что

Мы смогли показать, что ожидаемое значение коэффициента D для газа равно

Пока мы изучили в этой главе два разных процесса: под­вижность (дрейф молекул под действием «внешней» силы) и диффузию (разбегание молекул, определяемое только внутрен­ними силами, случайными столкновениями). Однако эти про­цессы связаны друг с другом, потому что в основе обоих яв­лений лежит тепловое движение, и оба раза в расчетах появля­лась длина свободного пробега l.