Выбрать главу

DU=DQ+FDL. (45.8)

Сравнивая (45.3) и (45.8), мы убедимся, что уравнение для ре­зины получилось сразу после замены одних букв другими. Если заменить V на L, а Р на —F, то все аргументы цикла Карно ока­жутся применимыми и к резине. Можно тотчас же, скажем, вы­вести, что нужное для растяжения на DL тепло DQ определяется уравнением, аналогичным (45.5): DQ=—Т(дF/дТ)LDL. Это уравнение говорит нам, насколько увеличится сила, если длина резиновой полоски при нагревании останется постоянной. Надо только узнать, сколько тепла требуется для поддержания по­стоянной температуры при небольшом растяжении полоски. Итак, мы видим, что и к резине, и к газу применимы одни и те же уравнения. Можно даже писать DU=DQ+ADB, где А и В — самые разные величины, сила и длина, давление и объем и т. д. Если интересует поведение газа, нужно заменить A и В на Р и V.

Для примера рассмотрим разность электрических потен­циалов, или электродвижущую силу (э. д. с.) батареи Е, и заряд DZ, прошедший через батарею. Мы знаем, что работа, произво­димая обратимой электрической батареей, например аккуму­лятором, равна EDZ. (Поскольку мы не включили в рассмотре­ние член PDV, то придется потребовать, чтобы объем оставался постоянным.) Посмотрим, что скажет о работе батареи термоди­намика. Если заменить Р на Е, а V на Z, то вместо уравнения (45.6) получится

Это уравнение говорит нам, что при путешествии заряда DZ по батарее меняется внутренняя энергия U. Но почему DU/DZ — это не просто э. д. с. батареи E? Дело в том, что в реальных об­стоятельствах движение зарядов внутри батареи вызывает выделение тепла. Внутренняя анергия батареи изменяется, во-первых, за счет работы, производимой батареей во внешней цепи, и, во-вторых, за счет нагревания батареи. Интересно, что вто­рую часть изменения внутренней энергии опять-таки можно подсчитать, следя, как меняется э. д. с. батареи при изменении температуры. Между прочим, когда заряды текут по батарее, там происходят химические реакции, и уравнение (45.9) указы­вает на отличный способ измерения необходимой для реакции энергии. Для этого нам нужно лишь сделать батарею, работаю­щую на этой реакции, и сначала просто измерить э. д. с., а потом проследить, как меняется э. д. с. с температурой, если ни один заряд не выпускается из батареи!

Мы предположили, что объем батареи можно поддерживать постоянным, только поэтому мы позволили себе пренебречь членом PDV и считать, что работа батареи равна EDZ. Но оказы­вается, что поддерживать объем постоянным технически очень трудно. Гораздо легче держать батарею под постоянным атмо­сферным давлением. Вот почему химики не любят только что написанных нами уравнений: они предпочитают уравнения, которые были бы связаны с постоянным давлением. Мы с самого начала этой главы за независимые переменные приняли V и Т. Химикам больше нравятся Р и Т, поэтому посмотрим теперь, как преобразуются наши выводы при переходе к химической системе переменных. Постарайтесь при этом не ошибиться, потому что мы как-никак сменили детали и перешли от Т и V к Т и Р.

Начнем с (45.3), где DU=DQ-PDV; член PDV можно заме­нить на EDZ или даже на АDВ. Если бы нам удалось как-нибудь заменить PDV на VDP, тогда V и Р поменялись бы ролями и химики остались бы довольны. Тот, кто сообразителен, заметит, что дифференциал произведения PV равен d(PV)=PdV+VdP. Добавив это равенство к (45.3), он получит

Чтобы все наши последующие выводы походили на выводы из уравнения (45.3), давайте будем считать U+PV какой-то новой функцией, назовем ее энтальпией Н, и напишем в таком виде: DH=DQ+VDP.

Вот теперь мы готовы перевести все наши рассуждения на химический язык, надо только помнить, что U®H, Р®V, V®P. Химики считают, что вся термодинамика содержится не в уравнении (45.7), а в уравнении

Выяснив, как происходит переход к химическим переменным Т и Р, вернемся к нашим старым переменным. Теперь и уже до конца главы нашими независимыми переменными будут Т и V. Сейчас давайте применим полученные результаты к некото­рым физическим процессам. Сначала рассмотрим идеальный газ. Из кинетической теории известно, что внутренняя энергия газа зависит только от характера движения молекул и от их числа. Внутренняя энергия зависит только от Т, а к V она безразлична. Если изменять V при постоянной Т, то U не изменится. Значит, (dU/dV)T=0, и уравнение (45.7) говорит нам, что для идеального газа