Из двух изотерм можно снова построить цикл, соединив концы их плоских участков (скажем, адиабатами), как это показано на фиг. 45.4. Небольшая зазубрина в нижнем правом углу фигуры несущественна, и мы просто забудем о ней. Используем аргументы Карно, которые показывают, как связано тепло, подведенное к жидкости для превращения ее в пар, с работой, совершаемой веществом при обходе цикла. Пусть L—это тепло, необходимое для испарения жидкости в цилиндре. Вспомним, как мы рассуждали при выводе уравнения (45.5), и немедленно скажем, что L(DT/T) равно работе, совершенной веществом. Как и раньше, работа вещества равна площади, заключенной внутри цикла. Эта площадь приблизительно равна DP(VG—VL), где DР — разность давлений пара при температурах Т и Т—DT, VG — объем газа, a VL—объем жидкости. Оба объема надо измерять при давлении, равном давлению пара.
Сравнивая два выражения для работы, мы получаем L(DT/T)= DP(VG-VL), или
Уравнение (45.14) связывает скорость изменения давления пара с температурой и количеством тепла, необходимым для испарения жидкости. Хотя вывел его Карно, называется оно уравнением Клаузиуса — Клайперона.
Сравним уравнение (45.14) с результатом, следующим из кинетической теории. Обычно VG гораздо больше VL. Поэтому VG-VL»VG=RT/P на моль. Если еще предположить, что L — не зависящая от температуры постоянная (хотя это не очень хорошее приближение), то мы получим dP/8T=L/(RT2P). Вот решение этого дифференциального уравнения:
P=const·e-L/RT. (45.15)
Надо выяснить, в каких отношениях находится это выражение с полученной ранее с помощью кинетической теории зависимостью давления от температуры. Кинетическая теория говорит, хотя и очень неопределенно, что число молекул пара над жидкостью примерно равно
где UG—UL— разность отнесенных к молю внутренних энергий газа и жидкости. Термодинамическое уравнение (45.15) и кинетическое уравнение (45.16) очень похожи, потому что давление равно nkT, но все-таки это разные уравнения. Однако их можно сделать одинаковыми, если заменить старое предположение L=const предположением о том, что L—UG=const. Если предположить, что L—UG — не зависящая от температуры постоянная, то соображения, из которых ранее следовало (45.15), приведут теперь к уравнению (45.16).
Это сравнение показывает преимущества и недостатки термодинамики по сравнению с кинетической теорией. Прежде всего полученное термодинамически уравнение (45.14) — это точное соотношение, а (45.16) — всего-навсего приближение. Ведь нам пришлось предположить, что U приблизительно постоянна и что наша модель верна. Во-вторых, нам, быть может, никогда не удастся понять до конца, как газ переходит в жидкость, и все-таки уравнение (45.14) правильно, а (45.16)— это только приближение. В-третьих, хотя мы говорили о превращении газа в жидкость, наши аргументы верны для любого перехода из одного состояния в другое. Например, переход твердое тело — жидкость описывается кривыми, очень похожими на кривые фиг. 45.3 и 45.4.