Выбрать главу

Нетрудно догадаться, что при этом произой­дет. Действуя так же, как прежде, давайте предположим, что имеются два одинаковых осциллирующих источника с одной и той же частотой, причем фазы их подобраны так, что в некоторую точку Р сигналы приходят с оди­наковой фазой. Если это свет, то в этой точке он очень ярок, если это звук, то он очень громок, а если это электроны, то их очень много. С другой стороны, если приходящие волны отличаются по фазе на 180°, то в точке Р не будет никаких сигналов, ибо полная амплитуда будет иметь здесь минимум. Предположим теперь, что некто крутит ручку «регулировка фазы» одного из источников и меняет разность фаз в точке Р то туда, то сюда, скажем сначала он делает ее нулевой, затем — равной 180° и т. д. При этом, разумеется, будет меняться и сила приходящего сигнала. Ясно теперь, что если фаза одного из источников медленно, постоянно и равномерно меняется по сравнению с другим, начиная с нуля, а затем возрастает постепенно до 10, 20, 30, 40° и т. д., то в точке Р мы увидим ряд слабых и сильных «пульсаций», ибо когда разность фаз проходит через 360°, в амплитуде снова возникает максимум. Но утверждение, что один источник с постоянной скоростью меняет свою фазу по отношению к другому, равносильно утверждению, что число колебаний в 1 сек у этих двух источников несколько различно.

Итак, теперь известен ответ: если взять два источника, ча­стоты которых немного различны, то в результате сложения получаются колебания с медленно пульсирующей интенсив­ностью. Иначе говоря, все сказанное здесь действительно имеет отношение к делу!

Этот результат легко получить и математически. Предположим, например, что у нас есть две волны и забудем на минуту о всех пространственных соотношениях, а просто посмотрим, что приходит в точку Р. Пусть от одного источника приходит волна cosw1t, а от другого — волна cosw2t, причем обе частоты w1 и w2 не равны в точности друг другу. Разумеется, амплитуды их тоже могут быть различными, но сначала давайте предположим, что амплитуды равны. Общую задачу мы рассмотрим позднее. Полная амплитуда в точке Р при этом будет суммой двух косинусов. Если мы построим график зависимости амплитуды от вре­мени, как это показано на фиг.48.1,то окажется, что, когда гребни двух волн совпадают, получается большое отклонение, когда совпадают гребень и впадина — практически нуль, а когда гребни снова совпадают, вновь получается большая волна.

Фиг. 48.1. Суперпозиция двух косинусообразных волн с отношением частот 8:10. Точное повторение колебаний внутри каждого биения для общего случая не типично.

Математически нам нужно взять сумму двух косинусов и как-то ее перестроить. Для этого потребуются некоторые полез­ные соотношения между косинусами. Давайте получим их. Вы знаете, конечно, что

ei(a+b)=eiaeib (48.1)

и что вещественная часть экспоненты eia равна cosа, а мни­мая часть равна sin а. Если мы возьмем вещественную часть ехр [-i(a+b)], то получим cos (a+b), а для произведения

eiaeib=(cosa+isin a)(cosb+isinb)

мы получаем cosacosb-sinasinb плюс некоторая мнимая добавка. Сейчас, однако, нам нужна только вещественная часть. Таким образом,

cos(a+b)=cosacosb-sinasinb. (48.2)

Если теперь изменить знак величины b, то, поскольку коси­нус при этом не изменяет знака, а синус изменяет знак на обратный, мы получаем аналогичное выражение для косинуса разности

cos(a-b)=cosacosb+sinasinb. (48.3)

После сложения этих двух уравнений произведение синусов сократится, и мы находим, что произведение двух косинусов равно половине косинуса суммы плюс половина косинуса разности

cosacosb=1/2cos (а+b)+1/2cos (a-b). (48.4)