Выбрать главу

Теперь обратимся к другому роду задач, связанных с про­водниками. Рассмотрим две широкие металлические пластины, параллельные между собой и разделенные узким (по сравнению с их размерами) промежутком. Предположим, что пластины наэлектризованы равными, но противоположными зарядами.

Фиг. 6.12. Плоский конденсатор.

Заряды одной пластины будут притягивать к себе заряды дру­гой и потом равномерно распределятся на внутренней поверх­ности пластин. Пусть поверхностная плотность зарядов на пластинах будет +s и -s соответственно (фиг. 6.12). Из гл. 5 мы знаем, что поле между пластинами равно s/e0, а поле снаружи пластин равно нулю. Пластины обладают неравными потен­циалами j1 и j2. Их разности V удобно дать особое имя, ее часто называют «напряжением»

[некоторые обозначают буквой V потенциал, мы же его обозна­чили буквой j].

Разность потенциалов V — это работа (на единицу заряда), требуемая для переноса небольшого заряда с одной пластины на другую, так что

(6.33)

где ±Q суммарный заряд каждой пластины, А — ее пло­щадь, d щель между пластинами.

Мы видим, что напряжение пропорционально заряду. Эта пропорциональность между V и Q соблюдается для любых двух проводников в пространстве, если на одном из них имеется плюс-заряд, а на другом равный ему минус-заряд. Разность потенциалов между ними, т. е. напряжение, оказывается про­порциональной заряду. (Мы предполагаем, что вокруг нет ни­каких других зарядов.)

Почему возникает эта пропорциональность? Просто из-за принципа наложения. Пусть нам известно решение для одной совокупности зарядов, а потом мы наложим на него другое такое же решение. Заряды удвоятся, поля удвоятся, работа пе­реноса заряда от точки к точке тоже удвоится. По этой причине разность потенциалов двух точек пропорциональна заряду. В частности, разность потенциалов двух проводников пропор­циональна их зарядам. Эту пропорциональность когда-то решили записывать иначе. И стали писать

Q=CV,

где С — постоянное число. Этот коэффициент пропорциональ­ности назвали емкостью, а систему двух проводников — конденсатором. Для нашего конденсатора из параллельных пластин

(параллельные обкладки). (6.34)

Эта формула неточна, потому что поле в противоречии с на­шим предположением на самом деле не всюду однородно. Поле не кончается сразу на ребрах пластин, а похоже скорее на то, что изображено на фиг. 6.13. Суммарный заряд тоже равен не sА, как мы предположили; существует маленькая поправ­ка на краевой эффект. Чтобы знать, какова она, надо точнее рас­считать поле и посмотреть, что происходит на краях. Это очень сложная математическая задача, однако ее можно решить при помощи техники, о которой мы, впрочем, говорить здесь не бу­дем. Расчеты показывают, что плотность зарядов возле края пластин слегка возрастает. Это значит, что емкость пластин чуть выше, чем мы думали. [Хорошее приближение для емкости можно получить, если в уравнении (6.34) принять за А площадь, которую имели бы пластины, если б их расширили на 3/8 расстояния между ними.]

Мы говорили пока только о емкости двух проводников. Иногда люди говорят о емкости предмета самого по себе. Так, говорят, что емкость сферы радиусом а есть 4pe0а. При этом подразумевается, что вторым полюсом является сфера беско­нечного радиуса, т. е. что если на сфере помещен заряд

+ Q, то противоположным зарядом -Q обладает бесконечно боль­шая сфера. Можно говорить также о емкостях и тогда, когда проводников три или больше трех, но обсуждение этого во­проса мы отложим до лучших времен.

Пусть нам необходимо иметь конденсатор очень большой емкости. Большую емкость можно получить, взяв очень большую

площадь и очень малый промежуток. Можно про­ложить алюминиевые лен­ты провощенной бумагой и смотать их в трубку. (Поместив ее в пластмас­совую упаковку, мы полу­чим типичный радиоконденсатор.)

Фиг. 6.13. Электрическое поле у краев двух параллельных пластин.

Зачем они нужны? Они пригодны для того, чтобы накапливать заряд. Если бы мы захотели, например, собрать заряд на каком-то шаре, то его потенциал быстро подско­чил бы, а вскоре так поднялся бы, что заряды стали бы стекать в воздух, и от шара посыпались бы искры. Но если тот же заряд поместить внутрь конденсатора большой емкости, то напряжение близ конденсатора будет очень малым.