Выбрать главу

(14.32)

Векторный потенциал маленькой плоской петельки любой формы (круг, треугольник и т. п.) также дается уравнениями (14.30) и (14.31), если заменить Iab на

(14.33)

Мы предоставляем вам право это доказать.

Нашему уравнению можно придать векторную форму, если определить вектор m как нормаль к плоскости петли с поло­жительным направлением, определяемым по правилу правой руки (см. фиг. 14.8). Тогда можно написать

(14.34)

Нам еще нужно найти В. Пользуясь (14.33) и (14.34), а также (14.4). получаем

(14.35)

(под многоточием мы подразумеваем m/4pe0с2),

Компоненты поля В ведут себя точно так же, как компоненты поля Е для диполя, ориентированного вдоль оси z [см. уравне­ния (6.14) и (6.15), а также фиг. 6.5, стр. 115]. Вот почему мы называем петлю магнитным диполем. Слово «диполь» в при­менении к магнитному полю немного запутывает, потому что нет отдельных магнитных «полюсов», соответствующих элек­трическим зарядам. Магнитное «дипольное поле» создается не двумя «зарядами», а элементарной петлей с током.

В общем-то довольно любопытно, что, начав с совсем раз­ных законов, С·Е=r/e0 и СXВ=j/e0с2, можно прийти к полю одного и того же вида. Почему так получается? Потому что дипольные поля возникают, только когда мы находимся далеко от всех токов и зарядов. Тогда в большей части пространства уравнения для Е и В одинаковы: у обоих дивергенция и ротор равны нулю. Следовательно, они дают одни и те же решения. Однако источники, конфигурацию которых мы описываем с помощью дипольных моментов, физически совершенно различ­ны. В одном случае это циркулирующий ток, а в другом — пара зарядов, один над, а другой под плоскостью петли для соответствующего поля.

§ 6. Векторный потенциал цепи

Нас часто интересует магнитное поле, создаваемое цепью проводов, в которой диаметр провода очень мал по сравнению с размерами всей системы. В таких случаях мы можем упро­стить уравнения для магнитного поля.

Для тонкого провода элемент объема можно записать в виде

dV = Sds,

где S площадь поперечного сечения провода, a ds эле­мент расстояния вдоль проволоки. В самом деле, поскольку вектор ds имеет то же направление, что и j (фиг. 14.9), и мы можем предположить, что j постоянно по любому данному сечению, то можно записать векторное уравнение

(14.37)

Фиг. 14.9. Для тонкой проволоки jdV то же самое, что и Ids.

Фиг. 14.10. Магнитное поле провода может быть получено интегрированием по всей цепи.

Ho jS как раз то, что мы называем током I во всем проводе, так что наш интеграл для векторного потенциала (14.19) ста­новится равным

(14.38)

(фиг. 14.10). (Мы предполагаем, что / одно и то же вдоль всего контура. Если есть несколько ответвлений с разными токами, то следует, конечно, брать соответствующий ток в каждой ветви.)

Как и раньше, можно найти поле с помощью (14.38) либо прямым интегрированием, либо решая соответствующую элек­тростатическую задачу.

§ 7. Закон Био— Савара

В ходе изучения электростатики мы нашли, что электриче­ское поле известного распределения зарядов может быть получено сразу в виде интеграла [уравнение (4.16)]

Как мы видели, вычислить этот интеграл (а их на самом деле три, по одному на каждую компоненту) обычно бывает труднее, чем вычислить интеграл для потенциала и взять от него гра­диент.

Подобный интеграл связывает и магнитное поле с токами. Мы уже имеем интеграл для А [уравнение (14.19)]; мы можем получить интеграл и для В, если возьмем ротор от обеих частей:

А теперь мы должны быть осторожны. Оператор ротора озна­чает взятие производных от А(1), т. е. он действует только на координаты (x1, y1, z1). Можно внести оператор СX под ин­теграл, если помнить, что он действует только на переменные со значком 1, которые появляются, конечно, только в

Мы получаем для x-компоненты В:

(14.41)

Величина в скобках есть просто x-компонента от