Выбрать главу

Фиг. 22,13. Цепь, кото­рую нельзя проанализи­ровать с помощью последовательных и параллельных комбинаций.

Скажем, таким способом можно проанализировать схему, показанную на фиг. 22.12. Импедансы z4 и z5 можно заменить их параллельным эквивалентом, то же можно сделать с импедансами z6 и z7. Затем импеданс z2 можно скомбинировать с параллельным эквивалентом z6 и z7, по правилу последова­тельного соединения импедансов. Так постепенно можно свести всю схему к генератору, последовательно соединенному с одним импедансом Z. И тогда ток через генератор просто равен e/Z. А действуя в обратном порядке, можно найти токи в каждом импедансе.

Однако бывают совсем простые схемы, которые этим методом не проанализируешь. Например, схема фиг. 22.13. Чтобы проанализировать эту цепь, надо расписать уравнения для токов и напряжений по правилам Кирхгофа. Давайте проделаем это. Имеется только одно уравнение для токов:

I1 + I2 + I3=0, откуда

I3=-(I1+I2).

Выкладки можно сэкономить, если этот результат сразу же подставить в уравнения для напряжений. В этой схеме таких уравнений два:

-El + I2z2-Ilzl=0 и Ј2-(Il + I2)z3-I2z2=0.

На два уравнения приходится два неизвестных тока. Решая их, получаем 11 и I2:

(22.20)

и

(22.21)

А третий ток получается как сумма первых двух.

Вот еще пример цепи, которую по правилам параллель­ных и последовательных импедансов рассчитывать нельзя

Фиг. 22.14. Мостиковая схема.

(фиг. 22.14). Такую схему на­зывают «мостик». Она встре­чается во многих приборах, измеряющих импедансы. В таких схемах обычно инте­ресуются таким вопросом:

как должны соотноситься различные импедансы, чтобы ток че­рез импеданс zs был равен нулю? Вам предоставляется право найти те условия, при которых это действительно так,

§ 4. Эквивалентные контуры

Положим, мы подключили генератор Ј к цепи, в которой есть множество сложных переплетений импедансов (схематиче­ски это показано на фиг. 22.15, а). Все уравнения, вытекающие из правил Кирхгофа, линейны, и поэтому, вычислив из них ток I через генераторы, мы получим величину I, пропорциональную e. Можно написать

где теперь zэфф— это некоторое комплексное число, алгебраиче­ская функция всех элементов цепи. (Если в цепи нет никаких

генераторов, кроме упомянутого, то в формуле не будет добавочной части, не зависящей от e.) Но получившееся уравнение — это как раз то, которое нужно было бы написать для схемы фиг. 22.15, б. И покуда нас интересует только то, что происходит слева от за­жимов а и b, до тех пор обе схемы фиг. 22.15 эквивалентны.

Фиг. 22.15. Любая сеть пассивных элементов с двумя выводами эквивалентна эффективному импедансу.

Фиг. 22.16. Любую сеть с двумя выводами можно заменить генератором, последовательно соединенным с импедансом.

И поэтому можно сделать общее утверждение, что любую цепь пассивных элементов с двумя выводами можно заменить одним-единственным импедансом zэфф не изменив в остальной части цепи ни токов, ни напряжений. Утверждение это, естественно, всего лишь мелкое замечание о том, что следует из правил Кирхгофа, а в конечном счете — из ли­нейности уравнений Максвелла.

Идею эту можно обобщить на схемы, в которые входят как генераторы, так и импедансы. Представьте, что мы глядим на эту схему «с точки зрения» одного из импедансов, который мы обозначим zn (фиг. 22.16, а). Если бы решить уравнение для то­ка, мы бы увидели, что напряжение Vn между зажимами а и b есть линейная функция I, которую можно записать в виде